Using sde-as

The GNU Assembler
for the MIPS family

Version 2.9-mipssde-030910

The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the first (Vax) version of as for Project GNU. The proprietors,
management and staff of TNCCA thank FSF for distracting the boss while they got some

work done.

Dean Elsner, Jay Fenlason & friends

Using sde-as
Edited by Cygnus Support

Copyright (©) 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-

ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Chapter 1: Overview 1

1 Overview

This manual is a user guide to the GNU assembler sde-as. This version of the manual
describes sde-as configured to generate code for MIPS architectures.

Here is a brief summary of how to invoke sde-as. For details, see Chapter 2 [Comand-
Line Options], page 9.
sde-as [-alcdhlns][=file]] [-D] [--defsym sym=val]

[

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

-f] [-—gstabs] [——gdwarf2] [--help] [-Idir 1] [-J]1 [-K]1 [-L]1]
--keep-locals 1 [-o objfile 1 [-R 1 [--statistics 1 [-v]
-version] [--version] [-W] [--warn] [--fatal-warnings]
w][X]1[-x1T[-2]1

-EL] [-EB] [-G num] [-0[num]]

-mcpu=cpu] [-mabi=abi]

-mipsl] [-mips2] [-mips3] [-mips4] [-mips5]

-mips32 1 [-mips32r2] [-mips64] [-mips64r2]

-mips16 1 [-mipsi6e]

-msmartmips] [-mips3D]

-mgp32 1 [-mgp64] [-mfp32 1 [-mfp64]

-mhard-float] [-msingle-float]

-msoft-float] [-mno-float]

-mno-fix-cw4010] [-mno-fix-vr4300] [-mno-fix-r4000]
-mdiv-checks] [-mno-div-checks]

-membedded-data] [-mno-gpconst]

—-—trap] [--no-break] [--break] [--—no-trap]

-KPIC] [-call_shared] [-non_shared] [-xgot]
-membedded-pic]

-—— | files ...]

-a[cdhlmns]

-D

Turn on listings, in any of a variety of ways:
-ac omit false conditionals

-ad omit debugging directives

-ah include high-level source

-al include assembly

-am include macro expansions

-an omit forms processing

-as include symbols

=file set the name of the listing file

You may combine these options; for example, use ‘-aln’ for assembly listing

without forms processing. The ‘=file’ option, if used, must be the last one.
By itself, ‘-a’ defaults to ‘-ahls’.

Ignored. This option is accepted for script compatibility with calls to other
assemblers.

--defsym sym=value

Define the symbol sym to be value before assembling the input file. value must
be an integer constant. As in C, a leading ‘Ox’ indicates a hexadecimal value,
and a leading ‘0’ indicates an octal value.

2 Using sde-as (MIPS)

-f “fast” —skip whitespace and comment preprocessing (assume source is compiler
output).

—--gstabs Generate stabs debugging information for each assembler line. This may help
debugging assembler code, if the debugger can handle it.

--gdwarf2
Generate DWARF2 debugging information for each assembler line. This may
help debugging assembler code, if the debugger can handle it.

--help Print a summary of the command line options and exit.

-Idir Add directory dir to the search list for .include directives.

-J Don’t warn about signed overflow.
-K This option is accepted but has no effect on the MIPS family.
-L

--keep-locals
Keep (in the symbol table) local symbols. On traditional a.out systems these
start with ‘L’, but different systems have different local label prefixes.

-o objfile
Name the object-file output from sde-as objfile.

-R Fold the data section into the text section.

--statistics
Print the maximum space (in bytes) and total time (in seconds) used by assem-
bly.

--strip-local-absolute

Remove local absolute symbols from the outgoing symbol table.
-v
-version Print the as version.
--version

Print the as version and exit.
-W
--no-warn

Suppress warning messages.
-X
--fatal-warnings

Treat warnings as errors.

--warn Don’t suppress warning messages or treat them as errors.
-w Ignored.

-x Ignored.

-X Treat warnings as errors.

-Z Generate an object file even after errors.

Chapter 1: Overview 3

-- | files ...
Standard input, or source files to assemble.

The following options are available when sde-as is configured for a MIPS processor. For
a full description of these arguments, see Section 8.74 [Assembler options], page 49.

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. Set to zero to disable.

-0

-0num Selects the assembler optimization level.

-EB

-EL Use ‘-EB’ to select big-endian output, and ‘~EL’ for little-endian.
-mcpu=cpu

Generate code for a particular MIPS CPU.

-mipsl, -mips2, -mips3, -mips4, -mipsb
-mips32, -mips32r2, -mips64, -mips64r2
Generate code for a particular MIPS ISA (Instruction Set Architecture) level.

-mips16 Enables the MIPS16 compressed instruction set extension. This will not gen-
erate MIPS16 code automatically, you must include ‘.set mips16’ and ‘.set
nomips16’ directives around sections of assembler code which are written for
MIPS16. Most users will never, and should never, write MIPS16 assembler
code. MIPS16 is meant as an intermediate code generated by the compiler to
reduce code size — possibly at the cost of some speed. MIPS16 CPUs always
run the normal 32-bit MIPS instruction set as well, which is usually a better
choice for assembler modules.

-mips16e Enables the enhanced MIPS16e compressed instruction set extension. See
‘-mips16’ above for usage.

-msmartmips
Enables the SmartMIPS extension to the MIPS32 instruction set.

-mips3D Enables the MIPS-3D extension to the MIPS64 instruction set.

-mabi=32|064|n32|64|eabi|meabi
Generate code for the indicated ABI.

-mgp32 Assume that the 32 general purpose registers are 32 bits wide.
-mgp64 Assume that the 32 general purpose registers are 64 bits wide.

-mfp32 Assume that 32 32-bit floating point registers are available (equivalent to 16
64-bit registers, when used in pairs).

-mfp64 Assume that 32 64-bit floating point registers are available.

-mhard-float
Enable use of the floating-point coprocessor instructions. This is the default.

-msingle-float
Enable use of the floating-point coprocessor instructions, but only for single-
precision arithmetic.

4 Using sde-as (MIPS)

-msoft-float
-mmo-float
Generate an error message if any floating-point instructions are used.

-mno-div-checks

-mdiv-checks
Disable (or enable) the automatic generation of code to check for division by
zero, or divide overflow.

--trap

--no-break
Generate code which takes a trap exception rather than a break exception when
multiply or divide overflow error is detected.

--break

--no-trap
Generate code to take a break exception rather than a trap exception when an
divide or multiply overflow is detected. This is the default.

-KPIC
-call_shared
Enable the generation of MIPS/abi position-independent code.

-xgot Generate assume a “large” global offset table references for MIPS /abi code.

-non_shared
Disable position-independent code. This is the default.

-membedded-pic
Generate PIC code suitable for some embedded systems. Not supported on
MIPS SDE.

-membedded-data
-mno-gpconst
Place floating-point immediates in read-only data section.

-mno—-fix-cw4010

Disables assembler workaround for early versions of the LSI CW4010 CPU.
-mno—-fix-vr4300

Disables assembler workaround for early versions of the Vr4300 CPU.
-mno—-fix-r4000

Disables assembler workaround for early versions of the R4000.

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use GNU sde-as. We cover the
syntax expected in source files, including notation for symbols, constants, and expressions;
the directives that sde-as understands; and of course how to invoke sde-as.

We also cover special features in the MIPS configuration of sde-as, including assembler
directives.

Chapter 1: Overview 5

On the other hand, this manual is not intended as an introduction to programming in as-
sembly language—Ilet alone programming in general! In a similar vein, we make no attempt
to introduce the machine architecture; we do mot describe the instruction set, standard
mnemonics, registers or addressing modes that are standard to a particular architecture.

1.2 The GNU Assembler

GNU as is really a family of assemblers. This manual describes sde-as, a member of that
family which is configured for the MIPS architectures. If you use (or have used) the GNU
assembler on one architecture, you should find a fairly similar environment when you use it
on another architecture. Each version has much in common with the others, including object
file formats, most assembler directives (often called pseudo-ops) and assembler syntax.

sde-as is primarily intended to assemble the output of the GNU C compiler sde-gcc
for use by the linker sde-1d. Nevertheless, we’ve tried to make sde-as assemble correctly
everything that other assemblers for the same machine would assemble.

Unlike older assemblers, sde—as is designed to assemble a source program in one pass
of the source file. This has a subtle impact on the .org directive (see Section 7.45 [.org],
page 41).

1.3 Object File Formats

The GNU assembler can be configured to produce several alternative object file formats. For
the most part, this does not affect how you write assembly language programs; but direc-
tives for debugging symbols are typically different in different file formats. See Section 5.5
[Symbol Attributes|, page 26. On the MIPS, sde-as is configured to produce ELF format
object files.

1.4 Command Line

After the program name sde-as, the command line may contain options and file names.
Options may appear in any order, and may be before, after, or between file names. The
order of file names is significant.

‘~=? (two hyphens) by itself names the standard input file explicitly, as one of the files
for sde-as to assemble.

Except for ‘--" any command line argument that begins with a hyphen (‘-’) is an option.
Each option changes the behavior of sde-as. No option changes the way another option
works. An option is a ‘-’ followed by one or more letters; the case of the letter is important.
All options are optional.

Some options expect exactly one file name to follow them. The file name may either
immediately follow the option’s letter (compatible with older assemblers) or it may be the
next command argument (GNU standard). These two command lines are equivalent:

sde-as -o my-object-file.o mumble.s
sde-as -omy-object-file.o mumble.s

6 Using sde-as (MIPS)

1.5 Input Files

We use the phrase source program, abbreviated source, to describe the program input to
one run of sde-as. The program may be in one or more files; how the source is partitioned
into files doesn’t change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order specified.

Each time you run sde-as it assembles exactly one source program. The source program
is made up of one or more files. (The standard input is also a file.)

You give sde-as a command line that has zero or more input file names. The input files
are read (from left file name to right). A command line argument (in any position) that
has no special meaning is taken to be an input file name.

If you give sde-as no file names it attempts to read one input file from the sde-as
standard input, which is normally your terminal. You may have to type to tell
sde-as there is no more program to assemble.

Use ‘==’ if you need to explicitly name the standard input file in your command line.

If the source is empty, sde-as produces a small, empty object file.
Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used
in reporting error messages. One way refers to a line number in a physical file; the other
refers to a line number in a “logical” file. See Section 1.7 [Error and Warning Messages],
page 7.

Physical files are those files named in the command line given to sde-as.

Logical files are simply names declared explicitly by assembler directives; they bear no
relation to physical files. Logical file names help error messages reflect the original source
file, when sde-as source is itself synthesized from other files. sde-as understands the ‘#’
directives emitted by the sde-gcc preprocessor. See also Section 7.22 [.file], page 35.

1.6 Output (Object) File

Every time you run sde-as it produces an output file, which is your assembly language
program translated into numbers. This file is the object file. Its default name is a.out.
You can give it another name by using the —o option. Conventionally, object file names end
with ‘.0’. The default name is used for historical reasons: older assemblers were capable of
assembling self-contained programs directly into a runnable program. (For some formats,
this isn’t currently possible, but it can be done for the a.out format.)

The object file is meant for input to the linker sde-1d. It contains assembled program
code, information to help sde-1d integrate the assembled program into a runnable file, and
(optionally) symbolic information for the debugger.

Chapter 1: Overview 7

1.7 Error and Warning Messages

sde-as may write warnings and error messages to the standard error file (usually your
terminal). This should not happen when a compiler runs sde-as automatically. Warnings
report an assumption made so that sde-as could keep assembling a flawed program; errors
report a grave problem that stops the assembly.

Warning messages have the format
file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given (see Section 7.22
[.file], page 35) it is used for the filename, otherwise the name of the current input file
is used. If a logical line number was given (see Section 7.36 [.1line|, page 38) then it is
used to calculate the number printed, otherwise the actual line in the current source file is
printed. The message text is intended to be self explanatory (in the grand Unix tradition).
Error messages have the format
file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The actual message
text may be rather less explanatory because many of them aren’t supposed to happen.

Using sde-as (MIPS)

Chapter 2: Command-Line Options 9

2 Command-Line Options

This chapter describes command-line options available in all versions of the GNU assembler;
see Chapter 8 [Machine Dependencies|, page 49, for options specific to the MIPS.

If you are invoking sde-as via the GNU C compiler (version 2), you can use the ‘-Wa’
option to pass arguments through to the assembler. The assembler arguments must be
separated from each other (and the ‘-Wa’) by commas. For example:

gcc -¢ -g -0 -Wa,-alh,-L file.c
This passes two options to the assembler: ‘-alh’ (emit a listing to standard output with
with high-level and assembly source) and ‘-L’ (retain local symbols in the symbol table).

Usually you do not need to use this ‘-Wa’ mechanism, since many compiler command-
line options are automatically passed to the assembler by the compiler. (You can call the
GNU compiler driver with the ‘-v’ option to see precisely what options it passes to each
compilation pass, including the assembler.)

2.1 Enable Listings: -a[cdhlns]

These options enable listing output from the assembler. By itself, ‘-a’ requests high-level,
assembly, and symbols listing. You can use other letters to select specific options for the
list: ‘-ah’ requests a high-level language listing, ‘-al’ requests an output-program assembly
listing, and ‘-as’ requests a symbol table listing. High-level listings require that a compiler
debugging option like ‘-g’ be used, and that assembly listings (‘-al’) be requested also.

Use the ‘-ac’ option to omit false conditionals from a listing. Any lines which are not
assembled because of a false .if (or .ifdef, or any other conditional), or a true .if followed
by an .else, will be omitted from the listing.

Use the ‘-ad’ option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control listing output and
its appearance using the directives .1list, .nolist, .psize, .eject, .title, and .sbttl.
The ‘-an’ option turns off all forms processing. If you do not request listing output with
one of the ‘-a’ options, the listing-control directives have no effect.

The letters after ‘-a’ may be combined into one option, e.g., ‘-aln’.
2.2 -D

This option has no effect whatsoever, but it is accepted to make it more likely that scripts
written for other assemblers also work with sde-as.

2.3 Work Faster: -f

‘~f’ should only be used when assembling programs written by a (trusted) compiler. ‘-f’
stops the assembler from doing whitespace and comment preprocessing on the input file(s)
before assembling them. See Section 3.1 [Preprocessing], page 15.

Warning: if you use ‘-f’ when the files actually need to be preprocessed (if
they contain comments, for example), sde-as does not work correctly.

10 Using sde-as (MIPS)

2.4 .include search path: -I path

Use this option to add a path to the list of directories sde-as searches for files specified
in .include directives (see Section 7.30 [.include], page 37). You may use -I as many
times as necessary to include a variety of paths. The current working directory is always
searched first; after that, sde-as searches any ‘-I’ directories in the same order as they
were specified (left to right) on the command line.

2.5 Difference Tables: -K

On the MIPS family, this option is allowed, but has no effect. It is permitted for compati-
bility with the GNU assembler on other platforms, where it can be used to warn when the
assembler alters the machine code generated for ‘.word’ directives in difference tables. The
MIPS family does not have the addressing limitations that sometimes lead to this alteration
on other platforms.

2.6 Include Local Labels: -L

Labels beginning with ‘L’ (upper case only) are called local labels. See Section 5.3 [Symbol
Names|, page 25. Normally you do not see such labels when debugging, because they are
intended for the use of programs (like compilers) that compose assembler programs, not for
your notice. Normally both sde-as and sde-1d discard such labels, so you do not normally
debug with them.

This option tells sde-as to retain those ‘L. ..’ symbols in the object file. Usually if you
do this you also tell the linker sde-1d to preserve symbols whose names begin with ‘L’.

By default, a local label is any label beginning with ‘L’, but each target is allowed to
redefine the local label prefix.

2.7 Assemble in MRI Compatibility Mode: -M

The -M or --mri option selects MRI compatibility mode. This changes the syntax and
pseudo-op handling of sde-as to make it compatible with the ASM68K or the ASM960 (de-
pending upon the configured target) assembler from Microtec Research. The exact nature
of the MRI syntax will not be documented here; see the MRI manuals for more informa-
tion. Note in particular that the handling of macros and macro arguments is somewhat
different. The purpose of this option is to permit assembling existing MRI assembler code
using sde-as.

The MRI compatibility is not complete. Certain operations of the MRI assembler de-
pend upon its object file format, and can not be supported using other object file formats.
Supporting these would require enhancing each object file format individually. These are:

e global symbols in common section

The m68k MRI assembler supports common sections which are merged by the linker.
Other object file formats do not support this. sde-as handles common sections by
treating them as a single common symbol. It permits local symbols to be defined

Chapter 2: Command-Line Options 11

within a common section, but it can not support global symbols, since it has no way
to describe them.

complex relocations

The MRI assemblers support relocations against a negated section address, and reloca-
tions which combine the start addresses of two or more sections. These are not support
by other object file formats.

END pseudo-op specifying start address

The MRI END pseudo-op permits the specification of a start address. This is not
supported by other object file formats. The start address may instead be specified
using the —e option to the linker, or in a linker script.

IDNT, .ident and NAME pseudo-ops

The MRI IDNT, .ident and NAME pseudo-ops assign a module name to the output file.
This is not supported by other object file formats.

ORG pseudo-op

The m68k MRI ORG pseudo-op begins an absolute section at a given address. This
differs from the usual sde-as .org pseudo-op, which changes the location within the
current section. Absolute sections are not supported by other object file formats. The
address of a section may be assigned within a linker script.

There are some other features of the MRI assembler which are not supported by sde-as,

typically either because they are difficult or because they seem of little consequence. Some
of these may be supported in future releases.

EBCDIC strings
EBCDIC strings are not supported.
packed binary coded decimal

Packed binary coded decimal is not supported. This means that the DC.P and DCB.P
pseudo-ops are not supported.

FEQU pseudo-op

The m68k FEQU pseudo-op is not supported.
NOOBJ pseudo-op

The m68k NOOBJ pseudo-op is not supported.
OPT branch control options

The m68k OPT branch control options—B, BRS, BRB, BRL, and BRW—are ignored. sde-as
automatically relaxes all branches, whether forward or backward, to an appropriate size,
so these options serve no purpose.

OPT list control options

The following m68k OPT list control options are ignored: C, CEX, CL, CRE, E, G, I, M,
MEX, MC, MD, X.

other OPT options

The following m68k OPT options are ignored: NEST, 0, OLD, OP, P, PCO, PCR, PCS, R.
OPT D option is default

The m68k OPT D option is the default, unlike the MRI assembler. OPT NOD may be used
to turn it off.

12 Using sde-as (MIPS)

e XREF pseudo-op.

The m68k XREF pseudo-op is ignored.
e .debug pseudo-op

The 1960 .debug pseudo-op is not supported.
e .extended pseudo-op

The 1960 .extended pseudo-op is not supported.
e .list pseudo-op.

The various options of the i960 .1list pseudo-op are not supported.
e .optimize pseudo-op

The 1960 .optimize pseudo-op is not supported.
e .output pseudo-op

The 1960 .output pseudo-op is not supported.
e .setreal pseudo-op

The 1960 .setreal pseudo-op is not supported.

2.8 Dependency tracking: --MD

sde-as can generate a dependency file for the file it creates. This file consists of a single
rule suitable for make describing the dependencies of the main source file.

The rule is written to the file named in its argument.
This feature is used in the automatic updating of makefiles.

2.9 Name the Object File: -o

There is always one object file output when you run sde-as. By default it has the name
‘a.out’. You use this option (which takes exactly one filename) to give the object file a
different name.

Whatever the object file is called, sde-as overwrites any existing file of the same name.
2.10 Join Data and Text Sections: -R

-R tells sde-as to write the object file as if all data-section data lives in the text section. This
is only done at the very last moment: your binary data are the same, but data section parts
are relocated differently. The data section part of your object file is zero bytes long because
all its bytes are appended to the text section. (See Chapter 4 [Sections and Relocation],
page 21.)

When you specify -R it would be possible to generate shorter address displacements
(because we do not have to cross between text and data section). We refrain from doing
this simply for compatibility with older versions of sde-as. In future, -R may work this
way.

When sde-as is generating an object format which supports named sections, this option
is only useful if you use sections named ‘.text’ and ‘.data’.

Chapter 2: Command-Line Options 13

2.11 Display Assembly Statistics: --statistics

Use ‘--statistics’ to display two statistics about the resources used by sde-as: the
maximum amount of space allocated during the assembly (in bytes), and the total execution
time taken for the assembly (in CPU seconds).

2.12 Compatible output: --traditional-format

For some targets, the output of sde-as is different in some ways from the output of some
existing assembler. This switch requests sde-as to use the traditional format instead.

For example, it disables the exception frame optimizations which sde-as normally does
by default on sde-gcc output.

2.13 Announce Version: -v

You can find out what version of as is running by including the option ‘-v’ (which you can
also spell as ‘-version’) on the command line.

2.14 Control Warnings: -W, --warn, --no-warn

sde-as should never give a warning or error message when assembling compiler output.
But programs written by people often cause sde-as to give a warning that a particular
assumption was made. All such warnings are directed to the standard error file.

If you use the ‘-W’ and ‘--no-warn’ options, no warnings are issued. This only affects
the warning messages: it does not change any particular of how sde-as assembles your file.
Errors, which stop the assembly, are still reported.

You can switch these options off again by specifying ‘--warn’, which causes warnings to
be output as usual.

2.15 Make Warnings Fatal: -X, --fatal-warnings

If you use the ‘-X’ or ¢

warnings to be in error.

--fatal-warnings’ option, sde-as considers files that generate

2.16 Generate Object File in Spite of Errors: -Z

After an error message, sde-as normally produces no output. If for some reason you are
interested in object file output even after sde—as gives an error message on your program,
use the ‘-Z’ option. If there are any errors, sde-as continues anyways, and writes an object
file after a final warning message of the form ‘n errors, m warnings, generating bad
object file.’

14

Using sde-as (MIPS)

Chapter 3: Syntax 15

3 Syntax

This chapter describes the machine-independent syntax allowed in a source file. sde-as
syntax is similar to what many other assemblers use; it is inspired by the BSD 4.2 assembler.

3.1 Preprocessing

The sde-as internal preprocessor:

e adjusts and removes extra whitespace. It leaves one space or tab before the keywords
on a line, and turns any other whitespace on the line into a single space.

e removes all comments, replacing them with a single space, or an appropriate number
of newlines.

e converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything else you may get
from your C compiler’s preprocessor. You can do include file processing with the .include
directive (see Section 7.30 [.include], page 37). You can use the GNU C compiler driver
to get other “CPP” style preprocessing, by giving the input file a ‘.S’ suffix. See section
“Options Controlling the Kind of Output” in Using GNU CC.

Excess whitespace, comments, and character constants cannot be used in the portions
of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the ‘-f’ option, whitespace
and comments are not removed from the input file. Within an input file, you can ask for
whitespace and comment removal in specific portions of the by putting a line that says
#APP before the text that may contain whitespace or comments, and putting a line that
says #NO_APP after this text. This feature is mainly intend to support asm statements in
compilers whose output is otherwise free of comments and whitespace.

3.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs neater for people to read. Unless within character constants
(see Section 3.6.1 [Character Constants], page 17), any whitespace means the same as
exactly one space.

3.3 Comments

There are two ways of rendering comments to sde-as. In both cases the comment is
equivalent to one space.

Anything from ‘/*’ through the next ‘*/’ is a comment. This means you may not nest
these comments.
/%
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

16 Using sde-as (MIPS)

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is considered a comment
and is ignored. The line comment character is see Chapter 8 [Machine Dependencies],
page 49.

To be compatible with past assemblers, lines that begin with ‘#’ have a special inter-
pretation. Following the ‘#’ should be an absolute expression (see Chapter 6 [Expressions],
page 29): the logical line number of the nezt line. Then a string (see Section 3.6.1.1 [Strings],
page 17) is allowed: if present it is a new logical file name. The rest of the line, if any,
should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored.
(Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name
This is logical line # 36.

This feature is deprecated, and may disappear from future versions of sde-as.

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and lower
case), digits and the three characters ‘_.$’. No symbol may begin with a digit. Case is
significant. There is no length limit: all characters are significant. Symbols are delimited
by characters not in that set, or by the beginning of a file (since the source program must
end with a newline, the end of a file is not a possible symbol delimiter). See Chapter 5
[Symbols], page 25.

3.5 Statements

A statement ends at a newline character (‘\n’) or at a semicolon (‘;’). The newline or
semicolon is considered part of the preceding statement. Newlines and semicolons within
character constants are an exception: they do not end statements.

It is an error to end any statement with end-of-file: the last character of any input file
should be a newline.

An empty statement is allowed, and may include whitespace. It is ignored.

A statement begins with zero or more labels, optionally followed by a key symbol which
determines what kind of statement it is. The key symbol determines the syntax of the rest
of the statement. If the symbol begins with a dot ‘.’ then the statement is an assembler
directive: typically valid for any computer. If the symbol begins with a letter the statement
is an assembly language instruction: it assembles into a machine language instruction.

A label is a symbol immediately followed by a colon (:). Whitespace before a label or
after a colon is permitted, but you may not have whitespace between a label’s symbol and
its colon. See Section 5.1 [Labels], page 25.

label: .directive followed by something
another_label: # This is an empty statement.
instruction operand_1, operand_2, ...

Chapter 3: Syntax 17

3.6 Constants

A constant is a number, written so that its value is known by inspection, without knowing
any context. Like this:

.byte 74, 0112, 092, Ox4A, OX4a, °’J, ’\J # All the same value.
.ascii "Ring the bell\7" # A string constant.
.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.

.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. String constants (properly called
string literals) are potentially many bytes and their values may not be used in arithmetic
expressions.

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null characters.
The way to get special characters into a string is to escape these characters: precede them
with a backslash ‘\’ character. For example ‘\\’ represents one backslash: the first \ is an
escape which tells sde-as to interpret the second character literally as a backslash (which
prevents sde-as from recognizing the second \ as an escape character). The complete list
of escapes follows.

\b Mnemonic for backspace; for ASCII this is octal code 010.

\f Mnemonic for FormFeed; for ASCIT this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code 015.
\t Mnemonic for horizontal Tab; for ASCII this is octal code 011.

\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility
with other Unix systems, 8 and 9 are accepted as digits: for example, \008 has
the value 010, and \009 the value 011.

\x hex-digits...
A hex character code. All trailing hex digits are combined. Either upper or
lower case x works.

\\ Represents one ‘\’ character.

\" Represents one ‘"’ character. Needed in strings to represent this character,

because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ gives a warning, but assembles as if
the ‘\’ was not present. The idea is that if you used an escape sequence you

18 Using sde-as (MIPS)

clearly didn’t want the literal interpretation of the following character. However
sde-as has no other interpretation, so sde-as knows it is giving you the wrong
code and warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widely among
assemblers. The current set is what we think the BSD 4.2 assembler recognizes, and is
a subset of what most C compilers recognize. If you are in doubt, do not use an escape
sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately followed by that character.
The same escapes apply to characters as to strings. So if you want to write the character
backslash, you must write ’\\ where the first \ escapes the second \. As you can see, the
quote is an acute accent, not a grave accent. A newline (or semicolon ‘;’) immediately
following an acute accent is taken as a literal character and does not count as the end of
a statement. The value of a character constant in a numeric expression is the machine’s
byte-wide code for that character. sde-as assumes your character code is ASCII: ’4 means
65, ’B means 66, and so on.

3.6.2 Number Constants

sde-as distinguishes three kinds of numbers according to how they are stored in the target
machine. Integers are numbers that would fit into an int in the C language. Bignums are
integers, but they are stored in more than 32 bits. Flonums are floating point numbers,
described below.

3.6.2.1 Integers

A binary integer is ‘Ob’ or ‘OB’ followed by zero or more of the binary digits ‘01°.
An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567’).

A decimal integer starts with a non-zero digit followed by zero or more digits
(‘0123456789).

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen
from ‘0123456789abcdef ABCDEF’.

Integers have the usual values. To denote a negative integer, use the prefix operator ‘-’
discussed under expressions (see Section 6.2.3 [Prefix Operators], page 30).

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the number (or its
negative) takes more than 32 bits to represent in binary. The distinction is made because
in some places integers are permitted while bignums are not.

Chapter 3: Syntax 19

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indirect: a decimal floating
point number from the text is converted by sde-as to a generic binary floating point number
of more than sufficient precision. This generic floating point number is converted to a
particular computer’s floating point format (or formats) by a portion of sde-as specialized
to that computer.

A flonum is written by writing (in order)
e The digit ‘0’.
e A letter, to tell sde-as the rest of the number is a flonum.
e An optional sign: either ‘+’ or ‘-’.
e An optional integer part: zero or more decimal digits.
e An optional fractional part: ‘.’ followed by zero or more decimal digits.
e An optional exponent, consisting of:
e An ‘E’or ‘e’.
e Optional sign: either ‘+’ or ‘-’
e One or more decimal digits.
At least one of the integer part or the fractional part must be present. The floating point
number has the usual base-10 value.

sde-as does all processing using integers. Flonums are computed independently of any
floating point hardware in the computer running sde-as.

20

Using sde-as (MIPS)

Chapter 4: Sections and Relocation 21

4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in” those addresses is
treated the same for some particular purpose. For example there may be a “read only”
section.

The linker sde-1d reads many object files (partial programs) and combines their contents
to form a runnable program. When sde-as emits an object file, the partial program is
assumed to start at address 0. sde-1d assigns the final addresses for the partial program,
so that different partial programs do not overlap. This is actually an oversimplification, but
it suffices to explain how sde-as uses sections.

sde-1d moves blocks of bytes of your program to their run-time addresses. These blocks
slide to their run-time addresses as rigid units; their length does not change and neither
does the order of bytes within them. Such a rigid unit is called a section. Assigning run-
time addresses to sections is called relocation. It includes the task of adjusting mentions of
object-file addresses so they refer to the proper run-time addresses.

An object file written by sde-as has at least three sections, any of which may be empty.
These are named text, data and bss sections.

sde-as can also generate whatever other named sections you specify using the ‘. section’
directive (see Section 7.56 [.section], page 44). If you do not use any directives that place
output in the ‘.text’ or ‘.data’ sections, these sections still exist, but are empty.

Within the object file, the text section starts at address 0, the data section follows, and
the bss section follows the data section.

To let sde-1d know which data changes when the sections are relocated, and how to
change that data, sde-as also writes to the object file details of the relocation needed. To
perform relocation sde-1d must know, each time an address in the object file is mentioned:

e Where in the object file is the beginning of this reference to an address?

How long (in bytes) is this reference?

Which section does the address refer to? What is the numeric value of

(address) — (start-address of section)?

Is the reference to an address “Program-Counter relative”?

In fact, every address sde-as ever uses is expressed as
(section) + (offset into section)
Further, most expressions sde-as computes have this section-relative nature.
In this manual we use the notation {secname N} to mean “offset N into section secname.”

Apart from text, data and bss sections you need to know about the absolute section.
When sde-1d mixes partial programs, addresses in the absolute section remain unchanged.
For example, address {absolute 0} is “relocated” to run-time address 0 by sde-1d. Al-
though the linker never arranges two partial programs’ data sections with overlapping ad-
dresses after linking, by definition their absolute sections must overlap. Address {absolute

22 Using sde-as (MIPS)

239} in one part of a program is always the same address when the program is running as
address {absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose section is
unknown at assembly time is by definition rendered {undefined U}—where U is filled in
later. Since numbers are always defined, the only way to generate an undefined address is
to mention an undefined symbol. A reference to a named common block would be such a
symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program.
sde-1d puts all partial programs’ text sections in contiguous addresses in the linked pro-
gram. It is customary to refer to the text section of a program, meaning all the addresses
of all partial programs’ text sections. Likewise for data and bss sections.

Some sections are manipulated by sde-1d; others are invented for use of sde-as and
have no meaning except during assembly.

4.2 Linker Sections

sde-1d deals with just four kinds of sections, summarized below.

named sections
These sections hold your program. sde-as and sde-1d treat them as separate
but equal sections. Anything you can say of one section is true another.

bss section
This section contains zeroed bytes when your program begins running. It is
used to hold unitialized variables or common storage. The length of each partial
program’s bss section is important, but because it starts out containing zeroed
bytes there is no need to store explicit zero bytes in the object file. The bss
section was invented to eliminate those explicit zeros from object files.

absolute section
Address 0 of this section is always “relocated” to runtime address 0. This is
useful if you want to refer to an address that sde-1d must not change when
relocating. In this sense we speak of absolute addresses being “unrelocatable”:
they do not change during relocation.

undefined section
This “section” is a catch-all for address references to objects not in the preceding
sections.

An idealized example of three relocatable sections follows. The example uses the tradi-
tional section names ‘.text’ and ‘.data’. Memory addresses are on the horizontal axis.

Chapter 4: Sections and Relocation 23

Partial program #1:
text data bss
| tetee | adaa | o0 |

Partial program #2:
text data bss
|rrT | poop | 000 |

linked program:

text data bss
| Trr | teee | | ddaa | ooop | 00000
addresses:

0...

4.3 Assembler Internal Sections

These sections are meant only for the internal use of sde-as. They have no meaning at
run-time. You do not really need to know about these sections for most purposes; but they
can be mentioned in sde-as warning messages, so it might be helpful to have an idea of
their meanings to sde-as. These sections are used to permit the value of every expression
in your assembly language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in
the assembler.

expr section
The assembler stores complex expression internally as combinations of symbols.
When it needs to represent an expression as a symbol, it puts it in the expr
section.

4.4 Sub-Sections

You may have separate groups of data in named sections that you want to end up near to
each other in the object file, even though they are not contiguous in the assembler source.
sde-as allows you to use subsections for this purpose. Within each section, there can
be numbered subsections with values from 0 to 8192. Objects assembled into the same
subsection go into the object file together with other objects in the same subsection. For
example, a compiler might want to store constants in the text section, but might not want
to have them interspersed with the program being assembled. In this case, the compiler
could issue a ‘.text 0’ before each section of code being output, and a ‘.text 1’ before
each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in subsection
number zero.

Subsections appear in your object file in numeric order, lowest numbered to highest.
(All this to be compatible with other people’s assemblers.) The object file contains no
representation of subsections; sde-1d and other programs that manipulate object files see

24 Using sde-as (MIPS)

no trace of them. They just see all your text subsections as a text section, and all your
data subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a nu-
meric argument to specify it, in a ‘.text expression’ or a ‘.data expression’ statement.
You can also use an extra subsection argument with arbitrary named sections: ‘.section
name, expression’. Expression should be an absolute expression. (See Chapter 6 [Expres-

sions|, page 29.) If you just say ‘.text’ then ‘.text 0’ is assumed. Likewise ‘.data’ means
‘.data 0’. Assembly begins in text 0. For instance:

.text 0 # The default subsection is text 0 anyway.
.ascii "This lives in the first text subsection. *"
.text 1

.ascii "But this lives in the second text subsection."
.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text 0O

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into
that section. Because subsections are merely a convenience restricted to sde—as there is no
concept of a subsection location counter. There is no way to directly manipulate a location
counter—but the .align directive changes it, and any label definition captures its current
value. The location counter of the section where statements are being assembled is said to
be the active location counter.

4.5 bss Section

The bss section is used for local common variable storage. You may allocate address space in
the bss section, but you may not dictate data to load into it before your program executes.
When your program starts running, all the contents of the bss section are zeroed bytes.

The .1comm pseudo-op defines a symbol in the bss section; see Section 7.34 [.lcomm],
page 38.

The .comm pseudo-op may be used to declare a common symbol, which is another form
of uninitialized symbol; see See Section 7.7 [.comm|, page 32.

When assembling for a target which supports multiple sections, such as ELF or COFF,
you may switch into the .bss section and define symbols as usual; see Section 7.56
[.section], page 44. You may only assemble zero values into the section. Typically the
section will only contain symbol definitions and . skip directives (see Section 7.62 [.skip],
page 45).

Chapter 5: Symbols 25

5 Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker
uses symbols to link, and the debugger uses symbols to debug.

Warning: sde-as does not place symbols in the object file in the same order
they were declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon ‘:’. The symbol then
represents the current value of the active location counter, and is, for example, a suitable
instruction operand. You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals sign
‘=", followed by an expression (see Chapter 6 [Expressions|, page 29). This is equivalent to
using the .set directive. See Section 7.57 [.set], page 44.

5.3 Symbol Names

Symbol names begin with a letter or with one of ‘._’. On most machines, you can also use
$ in symbol names; exceptions are noted in Chapter 8 [Machine Dependencies], page 49.
That character may be followed by any string of digits, letters, dollar signs (unless otherwise
noted in Chapter 8 [Machine Dependencies|, page 49), and underscores.

Case of letters is significant: foo is a different symbol name than Foo.

Each symbol has exactly one name. Each name in an assembly language program refers
to exactly one symbol. You may use that symbol name any number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names temporarily. You can define
and use as many local symbol names as you require, and they can be re-used throughout
the program. You may refer to them using a positive decimal number. To define a local
symbol, write a label of the form ‘N:’ (where N represents any positive number, or zero).
To refer to the most recent previous definition of that symbol write ‘Nb’, using the same
value of N as when you defined the label. To refer to the next definition of a local label,
write ‘Nf’. The ‘b’ stands for “backwards” and the ‘f’ stands for “forwards”.

Local symbols are not emitted by the current GNU C compiler.

Local symbol names are only a notation device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names stored

in the symbol table, appearing in error messages and optionally emitted to the object file
have these parts:

26 Using sde-as (MIPS)

L All local labels begin with ‘L’, or in the case of ELF format ‘.1L’. Normally both
sde-as and sde-1d don’t generate symbol table entries for local labels. These
labels are used for symbols you are never intended to see. If you use the ‘-L’
option then sde-as retains these symbols in the object file. If you also instruct
sde-1d to retain these symbols, you may use them in debugging.

digit If the label is written ‘0:’ then the digit is ‘0’. If the label is written ‘1:’ then
the digit is ‘1’. And so on.

C-4 This unusual character is included so you do not accidentally invent a symbol
of the same name. The character has ASCII value ‘\001’.

ordinal number
This is a serial number to keep the labels distinct. The first ‘0:’ gets the number
‘1’; The 15th ‘0:’ gets the number ‘15’; etc.. Likewise for the other labels ‘1:’
through 9:°.

For instance, the first 1: is named L1C-41, the 44th 3: is named L3C-444.

5.4 The Special Dot Symbol

The special symbol ¢.’ refers to the current address that sde-as is assembling into. Thus,
the expression ‘melvin: .long .’ defines melvin to contain its own address. Assigning a
value to . is treated the same as a .org directive. Thus, the expression ‘.=.+4’ is the same
as saying ‘.space 4.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and “Type”. Depending on
output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, sde-as assumes zero for all these attributes,
and probably won’t warn you. This makes the symbol an externally defined symbol, which
is generally what you would want.

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location in the text,
data, bss or absolute sections the value is the number of addresses from the start of that
section to the label. Naturally for text, data and bss sections the value of a symbol changes
as sde-1d changes section base addresses during linking. Absolute symbols’ values do not
change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the symbol is
not defined in this assembler source file, and sde-1d tries to determine its value from other
files linked into the same program. You make this kind of symbol simply by mentioning a
symbol name without defining it. A non-zero value represents a .comm common declaration.
The value is how much common storage to reserve, in bytes (addresses). The symbol refers
to the first address of the allocated storage.

Chapter 5: Symbols 27

5.5.2 Type

The type attribute of a symbol contains relocation (section) information, any flag settings
indicating that a symbol is external, and (optionally), other information for linkers and
debuggers. The exact format depends on the object-code output format in use.

28

Using sde-as (MIPS)

Chapter 6: Expressions 29

6 Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or follow
an expression.

The result of an expression must be an absolute number, or else an offset into a particular
section. If an expression is not absolute, and there is not enough information when sde-as
sees the expression to know its section, a second pass over the source program might be
necessary to interpret the expression—but the second pass is currently not implemented.
sde-as aborts with an error message in this situation.

6.1 Empty Expressions

An empty expression has no value: it is just whitespace or null. Wherever an absolute ex-
pression is required, you may omit the expression, and sde-as assumes a value of (absolute)
0. This is compatible with other assemblers.

6.2 Integer Expressions
An integer expression is one or more arguments delimited by operators.
6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are some-
times called “arithmetic operands”. In this manual, to avoid confusing them with the
“instruction operands” of the machine language, we use the term “argument” to refer to
parts of expressions only, reserving the word “operand” to refer only to machine instruction
operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data, bss,
absolute, or undefined. NNN is a signed, 2’s complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned that only the
low order 32 bits are used, and sde-as pretends these 32 bits are an integer. You may
write integer-manipulating instructions that act on exotic constants, compatible with other
assemblers.

Subexpressions are a left parenthesis ‘ (’ followed by an integer expression, followed by a
right parenthesis ‘)’; or a prefix operator followed by an argument.

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an argu-
ment. Infix operators appear between their arguments. Operators may be preceded and/or
followed by whitespace.

30 Using sde-as (MIPS)

6.2.3 Prefix Operator

sde-as has the following prefix operators. They each take one argument, which must be
absolute.

- Negation. Two’s complement negation.

Complementation. Bitwise not.

6.2.4 Infix Operators

Infix operators take two arguments, one on either side. Operators have precedence, but
operations with equal precedence are performed left to right. Apart from + or -, both
arguments must be absolute, and the result is absolute.

1. Highest Precedence

* Multiplication.

/ Division. Truncation is the same as the C operator ¢/’
yA Remainder.

<

<< Shift Left. Same as the C operator ‘<<’.

>

>> Shift Right. Same as the C operator ‘>>’.

2. Intermediate precedence
|
Bitwise Inclusive Or.
& Bitwise And.

Bitwise Exclusive Or.

! Bitwise Or Not.

3. Lowest Precedence

+ Addition. If either argument is absolute, the result has the section of
the other argument. You may not add together arguments from different
sections.

- Subtraction. If the right argument is absolute, the result has the section
of the left argument. If both arguments are in the same section, the result
is absolute. You may not subtract arguments from different sections.

In short, it’s only meaningful to add or subtract the offsets in an address; you can only
have a defined section in one of the two arguments.

Chapter 7: Assembler Directives 31

7 Assembler Directives

All assembler directives have names that begin with a period (‘.’). The rest of the name is
letters, usually in lower case.

This chapter discusses directives that are available regardless of the target machine
configuration for the GNU assembler.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility with other assemblers.
The original idea was that the assembly language source would be piped into the assembler.
If the sender of the source quit, it could use this directive tells sde-as to quit also. One
day .abort will not be supported.

7.2 .align abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the alignment required, as described below.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The way the required alignment is specified varies from system to system. For the a29k,
hppa, m68k, m88k, w65, sparc, Hitachi SH, and 1386 using ELF format, the first expression
is the alignment request in bytes. For example ‘.align 8’ advances the location counter
until it is a multiple of 8. If the location counter is already a multiple of 8, no change is
needed.

For other systems, including the i386 using a.out format, mips, and the arm and stron-
garm, it is the number of low-order zero bits the location counter must have after advance-
ment. For example ‘.align 3’ advances the location counter until it a multiple of 8. If the
location counter is already a multiple of 8, no change is needed.

This inconsistency is due to the different behaviors of the various native assemblers
for these systems which GAS must emulate. GAS also provides .balign and .p2align
directives, described later, which have a consistent behavior across all architectures (but
are specific to GAS).

32 Using sde-as (MIPS)

7.3 .ascii "string"...

.ascii expects zero or more string literals (see Section 3.6.1.1 [Strings], page 17) separated
by commas. It assembles each string (with no automatic trailing zero byte) into consecutive
addresses.

7.4 .asciz "string"...

.asciz is just like .ascii, but each string is followed by a zero byte. The “z” in ‘.asciz’

stands for “zero”.
7.5 .balign[wl] abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the alignment request in bytes. For example
‘.balign 8’ advances the location counter until it is a multiple of 8. If the location counter
is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .balignw and .balignl directives are variants of the .balign directive. The
.balignw directive treats the fill pattern as a two byte word value. The .balignl directives
treats the fill pattern as a four byte longword value. For example, .balignw 4,0x368d will
align to a multiple of 4. If it skips two bytes, they will be filled in with the value 0x368d
(the exact placement of the bytes depends upon the endianness of the processor). If it skips
1 or 3 bytes, the fill value is undefined.

7.6 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is assembled
into the next byte.

7.7 .comm symbol , length [, align]

.comm declares a common symbol named symbol. When linking, a common symbol in one
object file may be merged with a defined or common symbol of the same name in another
object file. If sde-1d does not see a definition for the symbol—just one or more common

Chapter 7: Assembler Directives 33

symbols—then it will allocate length bytes of uninitialized memory. length must be an
absolute expression. If sde-1d sees multiple common symbols with the same name, and
they do not all have the same size, it will allocate space using the largest size.

When using ELF, the .comm directive takes an optional third argument. This is the
desired alignment of the symbol, specified as a byte boundary (for example, an alignment of
16 means that the least significant 4 bits of the address should be zero). The alignment must
be an absolute expression, and it must be a power of two. If sde-1d allocates uninitialized
memory for the common symbol, it will use the alignment when placing the symbol. If no
alignment is specified, sde-as will set the alignment to the largest power of two less than
or equal to the size of the symbol, up to a maximum of 16.

7.8 .data subsection

.data tells sde-as to assemble the following statements onto the end of the data subsection
numbered subsection (which is an absolute expression). If subsection is omitted, it defaults
to zero.

7.9 .double flonums

.double expects zero or more flonums, separated by commas. It assembles floating point
numbers. On the MIPS family ‘. double’ emits 64-bit floating-point numbers in IEEE format.

7.10 .eject

Force a page break at this point, when generating assembly listings.

7.11 .else

.else is part of the sde-as support for conditional assembly; see Section 7.29 [.if], page 36.
It marks the beginning of a section of code to be assembled if the condition for the preceding
.if was false.

7.12 .elseif

.elseif is part of the sde-as support for conditional assembly; see Section 7.29 [.if],
page 36. It is shorthand for beginning a new .if block that would otherwise fill the entire
.else section.

7.13 .end

.end marks the end of the assembly file. sde-as does not process anything in the file past
the .end directive.

34 Using sde-as (MIPS)

7.14 .endfunc
.endfunc marks the end of a function specified with .func.

7.15 .endif

.endif is part of the sde-as support for conditional assembly; it marks the end of a block
of code that is only assembled conditionally. See Section 7.29 [.if], page 36.

7.16 .equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with ‘.set’; see
Section 7.57 [.set], page 44.

7.17 .equiv symbol, expression

The .equiv directive is like .equ and .set, except that the assembler will signal an error
if symbol is already defined.
Except for the contents of the error message, this is roughly equivalent to

.ifdef SYM
.err

.endif

.equ SYM,VAL

7.18 .err

If sde-as assembles a .err directive, it will print an error message and, unless the -Z
option was used, it will not generate an object file. This can be used to signal error an
conditionally compiled code.

7.19 .exitm
Exit early from the current macro definition. See Section 7.42 [Macro|, page 40.

7.20 .extern

.extern is accepted in the source program—for compatibility with other assemblers—but
it is ignored. sde-as treats all undefined symbols as external.

7.21 .fail expression

Generates an error or a warning. If the value of the expression is 500 or more, sde-as will
print a warning message. If the value is less than 500, sde-as will print an error message.
The message will include the value of expression. This can occasionally be useful inside
complex nested macros or conditional assembly.

Chapter 7: Assembler Directives 35

7.22 .file string

.file tells sde-as that we are about to start a new logical file. string is the new file name.
In general, the filename is recognized whether or not it is surrounded by quotes ‘"’; but if
you wish to specify an empty file name, you must give the quotes—"". This statement may
go away in future: it is only recognized to be compatible with old sde-as programs.

7.23 .fill repeat , size , value

result, size and value are absolute expressions. This emits repeat copies of size bytes.
Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it
is deemed to have the value 8, compatible with other people’s assemblers. The contents of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The
lowest order 4 bytes are value rendered in the byte-order of an integer on the computer
sde-as is assembling for. Each size bytes in a repetition is taken from the lowest order
size bytes of this number. Again, this bizarre behavior is compatible with other people’s
assemblers.

size and value are optional. If the second comma and value are absent, value is assumed
zero. If the first comma and following tokens are absent, size is assumed to be 1.

7.24 .float flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .single. On the MIPS family, .float emits 32-bit floating point numbers in IEEE
format.

7.25 .func name [,label]

.func emits debugging information to denote function name, and is ignored unless the file
is assembled with debugging enabled. Only ‘--gstabs’ is currently supported. label is the
entry point of the function and if omitted name prepended with the ‘leading char’ is used.
‘leading char’ is usually _ or nothing, depending on the target. All functions are currently
defined to have void return type. The function must be terminated with .endfunc.

7.26 .global symbol, .globl symbol

.global makes the symbol visible to sde-1d. If you define symbol in your partial program,
its value is made available to other partial programs that are linked with it. Otherwise,
symbol takes its attributes from a symbol of the same name from another file linked into
the same program.

Both spellings (‘.globl’ and ‘.global’) are accepted, for compatibility with other as-
semblers.

36 Using sde-as (MIPS)

7.27 .hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.

This directive is a synonym for ‘.short’.
7.28 .ident

This directive is used by some assemblers to place tags in object files. sde-as simply accepts
the directive for source-file compatibility with such assemblers, but does not actually emit
anything for it.

7.29 .if absolute expression

.if marks the beginning of a section of code which is only considered part of the source
program being assembled if the argument (which must be an absolute expression) is non-
zero. The end of the conditional section of code must be marked by .endif (see Section 7.15
[.endif], page 34); optionally, you may include code for the alternative condition, flagged by
.else (see Section 7.11 [.else], page 33). If you have several conditions to check, .elseif
may be used to avoid nesting blocks if/else within each subsequent .else block.

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol has been defined.

.ifc stringl,string2
Assembles the following section of code if the two strings are the same. The
strings may be optionally quoted with single quotes. If they are not quoted,
the first string stops at the first comma, and the second string stops at the end
of the line. Strings which contain whitespace should be quoted. The string
comparison is case sensitive.

.ifeq absolute expression
Assembles the following section of code if the argument is zero.

.ifeqs stringl,string2
Another form of .ifc. The strings must be quoted using double quotes.

.ifge absolute expression
Assembles the following section of code if the argument is greater than or equal
to zero.

.ifgt absolute expression
Assembles the following section of code if the argument is greater than zero.

.ifle absolute expression
Assembles the following section of code if the argument is less than or equal to
Zero.

.iflt absolute expression
Assembles the following section of code if the argument is less than zero.

Chapter 7: Assembler Directives 37

.ifnc stringl,string2.
Like .ifc, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

.ifndef symbol

.ifnotdef symbol
Assembles the following section of code if the specified symbol has not been
defined. Both spelling variants are equivalent.

.ifne absolute expression
Assembles the following section of code if the argument is not equal to zero (in
other words, this is equivalent to .if).

.ifnes stringl,string2
Like .ifeqs, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

7.30 .include "file"

This directive provides a way to include supporting files at specified points in your source
program. The code from file is assembled as if it followed the point of the .include; when
the end of the included file is reached, assembly of the original file continues. You can control
the search paths used with the ‘-I’ command-line option (see Chapter 2 [Command-Line
Options], page 9). Quotation marks are required around file.

7.31 .int expressions

Expect zero or more expressions, of any section, separated by commas. For each expression,
emit a number that, at run time, is the value of that expression. The byte order and bit
size of the number depends on what kind of target the assembly is for.

7.32 .irp symbol,values. ..

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irp directive, and is terminated by an .endr directive. For each
value, symbol is set to value, and the sequence of statements is assembled. If no value is
listed, the sequence of statements is assembled once, with symbol set to the null string. To
refer to symbol within the sequence of statements, use \symbol.

For example, assembling

.irp param,1,2,3
move d\param, sp@-
.endr

is equivalent to assembling
move di,sp0-
move d2,sp@-
move d3,sp-

38 Using sde-as (MIPS)

7.33 .irpc symbol,values. ..

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irpc directive, and is terminated by an .endr directive. For
each character in value, symbol is set to the character, and the sequence of statements is
assembled. If no value is listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of statements, use \symbol.

For example, assembling

.irpc param, 123
move d\param, sp@-
.endr

is equivalent to assembling

move di,sp@-
move d2,sp0-
move d3,sp@-

7.34 .lcomm symbol , length [, align]

Reserve length (an absolute expression) bytes for a local common denoted by symbol. The
section and value of symbol are those of the new local common. The addresses are allocated
in the bss section, so that at run-time the bytes start off zeroed. Symbol is not declared
global (see Section 7.26 [.global], page 35), so is normally not visible to sde-1d.

Some targets permit a third argument to be used with .1comm. This argument specifies
the desired alignment of the symbol in the bss section, specified as a byte boundary (for
example, an alignment of 16 means that the least significant 4 bits of the address should be
zero). The alignment must be an absolute expression, and it must be a power of two. If no
alignment is specified, sde-as will set the alignment to the largest power of two less than
or equal to the size of the symbol, up to a maximum of 16.

7.35 .1lflags

sde-as accepts this directive, for compatibility with other assemblers, but ignores it.

7.36 .line line-number

Even though this is a directive associated with the a.out or b.out object-code formats,
sde-as still recognizes it when producing COFF output, and treats ‘.1ine’ as though it
were the COFF ‘.1n’ if it is found outside a .def/.endef pair.

Inside a .def, ‘.1line’ is, instead, one of the directives used by compilers to generate
auxiliary symbol information for debugging.

Chapter 7: Assembler Directives 39

7.37 .linkonce [typel

Mark the current section so that the linker only includes a single copy of it. This may be
used to include the same section in several different object files, but ensure that the linker
will only include it once in the final output file. The .linkonce pseudo-op must be used
for each instance of the section. Duplicate sections are detected based on the section name,
so it should be unique.

This directive is only supported by a few object file formats; as of this writing, the only
object file format which supports it is the Portable Executable format used on Windows
NT.

The type argument is optional. If specified, it must be one of the following strings. For
example:

.linkonce same_size

Not all types may be supported on all object file formats.
discard Silently discard duplicate sections. This is the default.
one_only Warn if there are duplicate sections, but still keep only one copy.

same_size
Warn if any of the duplicates have different sizes.

same_contents
Warn if any of the duplicates do not have exactly the same contents.

7.38 .1n line-number
‘.1n’ is a synonym for ‘.1line’.
7.39 .mri val

If val is non-zero, this tells sde-as to enter MRI mode. If val is zero, this tells sde-as to
exit MRI mode. This change affects code assembled until the next .mri directive, or until
the end of the file. See Section 2.7 [MRI mode], page 10.

7.40 .list

Control (in conjunction with the .nolist directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the ‘-a’ command line
option; see Chapter 2 [Command-Line Options|, page 9), the initial value of the listing
counter is one.

7.41 .long expressions

.long is the same as ‘.int’, see Section 7.31 [.int], page 37.

40

Using sde-as (MIPS)

7.42 .macro

The commands .macro and . endm allow you to define macros that generate assembly output.
For example, this definition specifies a macro sum that puts a sequence of numbers into

memory:

.macro sum from=0, to=b
.long \from

.if \to-\from

sum "(\from+1)",\to
.endif

.endm

With that definition, ‘SUM 0,5’ is equivalent to this assembly input:
?

.long
.long
.long
.long
.long
.long

g W N+~ O

.MaCro macname
.macro macname macargs ...

.endm

Begin the definition of a macro called macname. If your macro definition re-
quires arguments, specify their names after the macro name, separated by com-
mas or spaces. You can supply a default value for any macro argument by
following the name with ‘=deflt’. For example, these are all valid .macro
statements:

.Mmacro comm
Begin the definition of a macro called comm, which takes no argu-

ments.

.macro plusl p, pl

.macro plusl p pl
Either statement begins the definition of a macro called plusi,
which takes two arguments; within the macro definition, write ‘\p’
or ‘\pl’ to evaluate the arguments.

.macro reserve_str p1=0 p2
Begin the definition of a macro called reserve_str, with two argu-
ments. The first argument has a default value, but not the second.
After the definition is complete, you can call the macro either as
‘reserve_str a,b’ (with ‘\p1’ evaluating to a and ‘\p2’ evaluating
to b), or as ‘reserve_str ,b’ (with ‘\p1’ evaluating as the default,
in this case ‘0’, and ‘\p2’ evaluating to b).

When you call a macro, you can specify the argument values either by position,
or by keyword. For example, ‘sum 9,17’ is equivalent to ‘sum to=17, from=9’.

Mark the end of a macro definition.

Chapter 7: Assembler Directives 41

.exitm Exit early from the current macro definition.

\@ sde-as maintains a counter of how many macros it has executed in this pseudo-
variable; you can copy that number to your output with ‘\@’, but only within
a macro definition.

7.43 .nolist

Control (in conjunction with the .list directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

7.44 .octa bignums

This directive expects zero or more bignums, separated by commas. For each bignum, it
emits a 16-byte integer.

The term “octa” comes from contexts in which a “word” is two bytes; hence octa-word
for 16 bytes.

7.45 .org new-1c , fill

Advance the location counter of the current section to new-Ic. new-Ic is either an absolute
expression or an expression with the same section as the current subsection. That is, you
can’t use .org to cross sections: if new-Ic has the wrong section, the .org directive is
ignored. To be compatible with former assemblers, if the section of new-Ic is absolute,
sde-as issues a warning, then pretends the section of new-Ic is the same as the current
subsection.

.org may only increase the location counter, or leave it unchanged; you cannot use .org
to move the location counter backwards.

Because sde-as tries to assemble programs in one pass, new-Ic may not be undefined. If
you really detest this restriction we eagerly await a chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not to the start of the
subsection. This is compatible with other people’s assemblers.

When the location counter (of the current subsection) is advanced, the intervening bytes
are filled with fill which should be an absolute expression. If the comma and fill are omitted,
fill defaults to zero.

7.46 .p2align[wl] abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the number of low-order zero bits the location
counter must have after advancement. For example ‘.p2align 3’ advances the location

42 Using sde-as (MIPS)

counter until it a multiple of 8. If the location counter is already a multiple of 8, no change
is needed.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .p2alignw and .p2alignl directives are variants of the .p2align directive. The
.p2alignw directive treats the fill pattern as a two byte word value. The .p2alignl di-
rectives treats the fill pattern as a four byte longword value. For example, .p2alignw
2,0x368d will align to a multiple of 4. If it skips two bytes, they will be filled in with
the value 0x368d (the exact placement of the bytes depends upon the endianness of the
processor). If it skips 1 or 3 bytes, the fill value is undefined.

7.47 .popsection

The .popsection directive can be used on ELF targets to redirect assembler output to the
section which was saved on the stack by the matching .pushsection directive.

7.48 .previous

The .previous directive can be used on ELF targets. It redirects assembler output back to
the section which was selected before the last .section or .struct directive. It implements
a one-deep stack only, which will be overwritten by the next section change directive. This
directive is portable to other ELF assemblers, but see .pushsection below for a more
powerful GNU-specific alternative.

7.49 .pushsection name

The .pushsection directive can be used on ELF targets to switch to a new section, after
first pushing the current section onto a stack; this is useful if you want to be able to change
sections safely inside a macro. It has exactly the same syntax as .section directive (see
Section 7.56 [.section], page 44), and you return to the previous section using the matching
.popsection directive. This directive is not portable to other ELF assemblers.

7.50 .print string

sde-as will print string on the standard output during assembly. You must put string in
double quotes.

Chapter 7: Assembler Directives 43

7.51 .psize lines , columns

Use this directive to declare the number of lines—and, optionally, the number of columns—
to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You may omit the
comma and columns specification; the default width is 200 columns.

sde-as generates formfeeds whenever the specified number of lines is exceeded (or when-
ever you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly specified with
.eject.

7.52 .purgem name

Undefine the macro name, so that later uses of the string will not be expanded. See
Section 7.42 [Macro]|, page 40.

7.53 .quad bignums

.quad expects zero or more bignums, separated by commas. For each bignum, it emits an
8-byte integer. If the bignum won’t fit in 8 bytes, it prints a warning message; and just
takes the lowest order 8 bytes of the bignum.

The term “quad” comes from contexts in which a “word” is two bytes; hence quad-word
for 8 bytes.

7.54 .rept count
Repeat the sequence of lines between the .rept directive and the next .endr directive count

times.

For example, assembling

.rept 3
.long O
.endr

is equivalent to assembling

.long O
.long O
.long O

7.55 .sbttl "subheading"

Use subheading as the title (third line, immediately after the title line) when generating
assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

44 Using sde-as (MIPS)

7.56 .section name

Use the .section directive to assemble the following code into a section named name.

This directive is only supported for targets that actually support arbitrarily named
sections; on a.out targets, for example, it is not accepted, even with a standard a.out
section name.

For ELF targets, the .section directive is used like this:
.section name[, "flags"[, @typell

The optional flags argument is a quoted string which may contain any combintion of the
following characters:

a section is allocatable
W section is writable
X section is executable

The optional type argument may contain one of the following constants:

@progbits
section contains data

@nobits section does not contain data (i.e., section only occupies space)

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to have none of the above flags:
it will not be allocated in memory, nor writable, nor executable. The section will contain
data.

For ELF targets, the assembler supports another type of .section directive for compat-
ibility with the Solaris assembler:

.section "name"[, flags...]

Note that the section name is quoted. There may be a sequence of comma separated
flags:

#alloc section is allocatable
#write section is writable
#execinstr

section is executable

7.57 .set symbol, expression

Set the value of symbol to expression. This changes symbol’s value and type to conform to
expression. If symbol was flagged as external, it remains flagged (see Section 5.5 [Symbol
Attributes], page 26).

You may .set a symbol many times in the same assembly.

If you .set a global symbol, the value stored in the object file is the last value stored
into it.

Chapter 7: Assembler Directives 45

7.58 .short expressions

This expects zero or more expressions, and emits a 16 bit number for each.

7.59 .single flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .float. On the MIPS family, .single emits 32-bit floating point numbers in IEEE
format.

7.60 .size

This directive is generated by compilers to include auxiliary debugging information in the
symbol table. It is only permitted inside .def/.endef pairs.

7.61 .sleb128 expressions

sleb128 stands for “signed little endian base 128.” This is a compact, variable length
representation of numbers used by the DWARF symbolic debugging format. See Section 7.70
[Uleb128], page 47.

7.62 .skip size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions.
If the comma and fill are omitted, fill is assumed to be zero. This is the same as ‘. space’.

7.63 .space size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions.
If the comma and fill are omitted, fill is assumed to be zero. This is the same as ‘. skip’.

7.64 .stabd, .stabn, .stabs

There are three directives that begin ‘.stab’. All emit symbols (see Chapter 5 [Symbols],
page 25), for use by symbolic debuggers. The symbols are not entered in the sde-as hash
table: they cannot be referenced elsewhere in the source file. Up to five fields are required:

string This is the symbol’s name. It may contain any character except ‘\000’, so
is more general than ordinary symbol names. Some debuggers used to code
arbitrarily complex structures into symbol names using this field.

type An absolute expression. The symbol’s type is set to the low 8 bits of this
expression. Any bit pattern is permitted, but sde-1d and debuggers choke on
silly bit patterns.

46 Using sde-as (MIPS)

other An absolute expression. The symbol’s “other” attribute is set to the low 8 bits
of this expression.

desc An absolute expression. The symbol’s descriptor is set to the low 16 bits of this
expression.
value An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a .stabd, .stabn, or .stabs statement, the
symbol has probably already been created; you get a half-formed symbol in your object file.
This is compatible with earlier assemblers!

.stabd type , other , desc
The “name” of the symbol generated is not even an empty string. It is a null
pointer, for compatibility. Older assemblers used a null pointer so they didn’t
waste space in object files with empty strings.

The symbol’s value is set to the location counter, relocatably. When your
program is linked, the value of this symbol is the address of the location counter
when the .stabd was assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value
All five fields are specified.

7.65 .string "str"

Copy the characters in str to the object file. You may specify more than one string to copy,
separated by commas. Unless otherwise specified for a particular machine, the assembler
marks the end of each string with a 0 byte. You can use any of the escape sequences
described in Section 3.6.1.1 [Strings], page 17.

7.66 .struct expression

Switch to the absolute section, and set the section offset to expression, which must be an
absolute expression. You might use this as follows:

.struct O
fieldl:

.space 4
field2:

.space 4
field3:

This would define the symbol fieldl to have the value 0, the symbol field2 to have
the value 4, and the symbol field3 to have the value 8. Assembly would be left in the
absolute section, and you would need to use a .section directive of some sort to change to
some other section before further assembly. For example with ELF targets you could use
the .previous directive to return to the previous section.

Chapter 7: Assembler Directives 47

7.67 .symver

Use the .symver directive to bind symbols to specific version nodes within a source file.
This is only supported on ELF platforms, and is typically used when assembling files to be
linked into a shared library. There are cases where it may make sense to use this in objects
to be bound into an application itself so as to override a versioned symbol from a shared
library.

For ELF targets, the .symver directive is used like this:

.symver name, name2@nodename

In this case, the symbol name must exist and be defined within the file being assembled.
The .versym directive effectively creates a symbol alias with the name name2@nodename,
and in fact the main reason that we just don’t try and create a regular alias is that the @
character isn’t permitted in symbol names. The name2 part of the name is the actual name
of the symbol by which it will be externally referenced. The name name itself is merely a
name of convenience that is used so that it is possible to have definitions for multiple versions
of a function within a single source file, and so that the compiler can unambiguously know
which version of a function is being mentioned. The nodename portion of the alias should
be the name of a node specified in the version script supplied to the linker when building a
shared library. If you are attempting to override a versioned symbol from a shared library,
then nodename should correspond to the nodename of the symbol you are trying to override.

7.68 .text subsection

Tells sde-as to assemble the following statements onto the end of the text subsection
numbered subsection, which is an absolute expression. If subsection is omitted, subsection
number zero is used.

7.69 .title "heading"

Use heading as the title (second line, immediately after the source file name and pagenum-
ber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

7.70 .uleb128 expressions

uleb128 stands for “unsigned little endian base 128.” This is a compact, variable length
representation of numbers used by the DWARF symbolic debugging format. See Section 7.61
[Sleb128], page 45.

7.71 .internal, .hidden, .protected

These directives can be used to set the visibility of a specified symbol. By default a symbol’s
visibility is set by its binding (local, global or weak), but these directives can be used to
override that.

48 Using sde-as (MIPS)

A visibility of protected means that any references to the symbol from within the
component that defines the symbol must be resolved to the definition in that component,
even if a definition in another component would normally preempt this.

A visibility of hidden means that the symbol is not visible to other components. Such
a symbol is always considered to be protected as well.

A visibility of internal is the same as a visibility of hidden, except that some extra,
processor specific processing must also be performed upon the symbol.

For ELF targets, the directives are used like this:

.internal name
.hidden name
.protected name

7.72 .word expressions

This directive expects zero or more expressions, of any section, separated by commas. For
each expression, sde-as emits a 32-bit number.

7.73 Deprecated Directives
One day these directives won’t work. They are included for compatibility with older assem-
blers.

.abort

.line

Chapter 8: MIPS Dependent Features 49

8 MIPS Dependent Features

GNU sde-as for MIPs architectures supports several different MIPS processors, and a range
of MIPS ISA levels. For information about the MIPS instruction set, and an overview of
MIPS assembly conventions, view the list of publications in the development tools section of
MIPS Technologies’ website (http://www.mips.com/devTools/bookstore.html).

8.74 Assembler options

The MIPS configurations of GNU sde-as support these special options:

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. Set to zero to disable this optimization. The default value
is 8, unless generating position-independent code, in which case it is 0, because
the gp register is then used for other purposes.

-0

-Onum Selects the assembler optimization level. By default the assembler will try
to avoid inserting nop instructions, and will fill a branch delay slot with the
instruction immediately before the branch, if that is safe to do. You can disable
the branch delay slot filling only by specifying ‘-00’.

-EB

-EL Use ‘-EB’ to select big-endian output, and ‘~EL’ for little-endian.

-mcpu=cpu

Generate code for a particular MIPS CPU. This option enables use of any
extra instructions specific to each CPU, and enables or disables insertion of
nop instructions as required for different CPUs.

The list of recognised CPU is as follows, grouped with aliases on the same line:

r2000, r2k,

r3000, r3k,

r6000, r6k,

r4000, r4400, r4200,

r4310, r4300,

r4111, r4100,

orion, r4600, r4700,

r4640, r4650,

r8000, r8k,

rc32364, rc3236x, cronus,
r5000, rbk,

r5400, rb5432, rb464, rbidxx,
r5500, rbbxx

rc64574, rc64575, rc6457x,
r10000, r12000, ri0k, ri2k,
4kc, 4kp, 4km, 4kec, 4kep, 4kem, 4ksc, 4ksd. mék,
bkc, bkf,

24kc, 24kf,

20kc, 25kf,

rm5230, rm5231, rm5260, rmb5261,
rm5270, rm5271, rmb52xx,
rm7000, rm7k,

50

-mipsi
-mips2
-mips3
-mips4
-mipsb5
-mips32
-mips32r2
-mips64
-mips64r2

-mipsl6

-mipsi16e

Using sde-as (MIPS)

r1900, pr1900, r3900, pr3900 tx39,
r4900, tx49,

1r33000, 1r33k,

4001, tr4101, tr4102, tr410x,
cw4001, cw4002, cw400x

4010, cw4010, cw40Oix

atm2, atmizer2, apu,

4020, cw4020

Generate code for a particular MIPS Instruction Set Architecture level. You
can also switch instruction sets during the assembly; see Section 8.77 [Directives
to override the ISA level|, page 53.

MIPS16 is an instruction set extension which provides a subset of true MIPS
instructions, with a restricted set of registers, and coded as 16-bit instructions.
It can make for much smaller program binaries. CPUs supporting MIPS16
switch from interpreting conventional MIPS to MIPS16 instructions when they
are asked to fetch an instruction from an odd address.

This flag is actually ignored by the assembler, which always starts off using the
conventional MIPS instruction set. It is difficult and usually pointless to try
to write assembler code for MIPS16—if you really need to then you can mix
MIPS16 and conventional MIPS code using explicit ‘. set mips16’ and ‘.set
nomips16’ directives.

MIPS16 CPUs can be either 32-bit or 64-bit implementations. To compile for
a 64-bit MIPS16 CPU you should first specify a 64-bit base ISA, e.g. ‘-mips3’.

MIPS16e is an enhancement of the MIPS16 instruction set, which provides even
greater code size reductions. It is only ever available when combined with a
MIPS32 or MIPS64 compliant.

Like ‘-mips16’, the ‘-mips16e’ command line option does not cause MIPS16e
code to be generated—that still needs a ‘.set mips16’ directive in the code.
But specifying ‘-mipsi16e’ with no other ISA flag will cause MIPS32 to be
selected as the 32-bit ISA.

To generate 64-bit MIPS16e code, first specify a 64-bit base ISA, e.g. ‘-mips64’.

-msmartmips

Enables the SmartMIPS extensions to the MIPS32 instruction set, which pro-
vides a number of new instructions which target smartcard and cryptographic
applications.

Chapter 8: MIPS Dependent Features 51

-mips3D

-mabi=32
-mabi=064
-mabi=n32
-mabi=64
-mabi=eabi
-mabi=meab

-mgp32

-mgp64

-mfp32

-mfp64

-mhard-flo

-msingle-f

-msoft-flo
-mno-float

MIPS-3D is an extension to the MIPS64 instruction set, which provides a paired
single floating-point vector type, and a number of new floating-point instruc-
tions which target geometry processing.

i

Generate code for the indicated ABI. At the moment, the only effect of this
option is that ‘-mabi=n64’ will select 64-bit ELF object code format and address
computations; the other ABI modes have no effect on the assembler.

Assume that the 32 general purpose registers are 32 bits wide. This is the
default when a 32-bit ISA is specified or implied. Such code will run correctly
on 64-bit MIPS CPUs so long as every function which might call your code
is built the same way. This option affects how some macro instructions are
expanded, but you may also want to generate 32-bit code while other enhanced
features of the 64-bit ISAs. Also, some 32-bit OSes only save the 32-bit registers
on a context switch, so it is essential never to use the 64-bit registers.

Assume that the 32 general purpose registers are 64 bits wide. This is the
default when a 64-bit ISA is specified or implied, and illegal unless your CPU
implements a 64-bit instruction set; so it’s hard to see when you’d use this
option explicitly, but is provided in the interests of symmetry with ‘-mgp32’.

Assume that 32 32-bit floating point registers are available, but only the even-
numbered 16 are used for arithmetic (the odd-numbered registers are used qui-
etly by the assembler for loading/storing the high-order bits of double-precision
values). This is the default when a 32-bit ISA is specified or implied.

Assume that 32 64-bit floating point registers are available. This is the default
when a 64-bit ISA is specified or implied, and indeed it is usually usually ille-
gal with 32-bit ISAs. The exception is that it can be used with ‘-mips32r2’,
since MIPS32 release 2 adds new instructions which allow a 32-bit CPU to be
combined with a 64-bit FPU.

at
Enable use of the floating-point coprocessor instructions. This is the default.

loat
Enable use of the floating-point coprocessor instructions, but only for single-
precision arithmetic (as implemented on the r4640 and r4650). Any use of
double-precision arithmetic will cause the assembler to generate an error mes-
sage.

at

These two options are equivalent, and will cause the assembler to generate an
error message if any floating-point instructions are used.

52 Using sde-as (MIPS)

-mno-div-checks

-mdiv-checks
Disable (or enable) the automatic generation of code to check for division by
zero, or divide overflow.

--trap

--no-break
sde-as automatically macro expands certain division and multiplication in-
structions to check for overflow and division by zero. This option causes sde-as
to generate code to take a trap exception rather than a break exception when
an error is detected. The trap instructions are only supported at Instruction
Set Architecture level 2 and higher.

--break

--no-trap
Generate code to take a break exception rather than a trap exception when an
divide or multiply overflow is detected. This is the default.

-KPIC

-call_shared
These options both enable the generation of MIPS/abi position-independent
code, as used on many modern Unix systems. This can also be enabled by
using the ‘.abicalls’ pseudo-op.

-xgot When generating MIPS/abi code, assume a “large” global offset table (more
than 32K global symbols). This generates a longer sequence of instructions for
each GOT reference.

-non_shared
Disable generation of position-independent code. This is the default.

-membedded-pic
Generate PIC code suitable for some embedded systems. All calls are made
using PC relative address, and all data is addressed using the gp register. No
more than 65536 bytes of global data may be used. This currently only works
on targets which use ECOFF; it does not work with ELF. Since MIPS SDE uses
ELF as its object format, this feature is not supported.

-membedded-data

-mno-gpconst
These equivalent options cause any floating-point immediate values to be placed
in the read-only data section, rather than the .1it4 or .1it8 data sections.

-mno-fix-cw4010
Disables an assembler workaround for early versions of the LST CW4010 CPU,
which inserts a nop before any branch which is itself a branch target. This
workaround is enabled automatically if either no CPU is selected and the ISA
is MIPS II or lower, or if the r3000, cw4010 or atm2 CPU type is selected.

-mno-fix-vr4300
Disables an assembler workaround for early versions of the Vr4300 CPU, which
inserts a nop between a floating-point multiply and an immediately following

Chapter 8: MIPS Dependent Features 53

integer or floating-point multiply. This workaround is enabled automatically if
either no CPU is selected and the ISA is MIPS III or lower, or if the r3000,
r4000 or Vr4300 CPU type is selected.

-mno-fix-r4000
Disables an assembler workaround for early versions of the R4000, which in-
serts a nop between a variable shift instruction and a multiply or divide. This
workaround is enabled automatically if either no CPU is selected and the ISA
is MIPS III or lower, or if the r3000 or r4000 CPU type is selected.

8.75 MIPS object code

Assembling for a MIPS ECOFF or ELF target supports some additional sections besides the
usual ‘.text’, ‘.data’ and .bss. The additional sections are ‘.rdata’, used for read-only
data, ‘.sdata’, used for small data, and ‘.sbss’, used for small common objects. In the
case of ELF the read-only data section is called ‘.rodata’.

When assembling for ECOFF or ELF, the assembler uses the $gp ($28) register to form
the address of “small data. Any symbol in the .sdata or .sbss sections is considered
“small” in this sense. For external objects, or for objects in the .bss section, you can use
the sde-gcc ‘-G’ option to control the size of objects addressed via $gp; the default value
is 8, meaning that a reference to any object eight bytes or smaller uses $gp. Passing ‘-G
0’ to sde-as prevents it from using the $gp register on the basis of object size (but the
assembler uses $gp for objects in .sdata or sbss in any case). The size of an object in the
.bss section is set by the .comm or .1comm directive that defines it. The size of an external
object may be set with the .extern directive. For example, ‘.extern sym,4’ declares that
the object at sym is 4 bytes in length, while leaving sym otherwise undefined.

Using small data requires linker support, and assumes that the $gp register is correctly
initialized (normally done automatically by the startup code). MIPS assembly code must
not modify the $gp register.

8.76 Directives for debugging information

MIPS ELF sde-as supports several directives used for generating debugging information
which are not supported by traditional MIPS assemblers. These are .stabd, .stabn, and
.stabs.

The debugging information generated by the three .stab directives can only be read
by GDB, not by traditional MIPs debuggers (this enhancement is required to fully support
C++ debugging). These directives are primarily used by compilers, not assembly language
programmers!

8.77 Directives to override the ISA level

GNU sde-as supports an additional directive to change the MIPs Instruction Set Architecture
level on the fly: .set mipsn. n should be a number from 0 to 5, 32 or 64. A non-zero value
makes the assembler accept instructions for the corresponding 1SA level, from that point

54 Using sde-as (MIPS)

on in the assembly. .set mipsn affects not only which instructions are permitted, but also
how certain macros are expanded. The ‘.set mipsO’ directive restores the 1SA level to its
original level: either the level you selected with command line options, or the default for
your configuration. You can use this feature to permit specific 64 bit instructions while
assembling with a 32 bit 1SA. Use this directive with care!

The ‘.set gp64’ directive affects how immediate values and certain MIPS macro in-
structions are expanded, so that 64-bit values will be held in a single register. This is only
valid if a 64 bit 1SA has already been selected. The ‘.set gp32’ directive has the opposite
effect, and the ‘.set nogp64’ or ‘.set nogp32’ directives return to the level selected by the
command line options.

The ‘. set £p64’ directive tells the assembler to assume the existence of 32 64-bit floating-
point registers. This is only valid if a 64 bit 1SA has already been selected. The ‘.set £fp32’
directive has the opposite effect, and the ‘.set nofp64’ or ‘.set nofp32’ directives return
to the level selected by the command line options.

The directive ‘.set mips16’ puts the assembler into MIPS16 mode, in which it will gen-
erate the compressed instruction set. Use ‘. set nomips16’ to return to normal 32 bit mode.
The directive ‘. set mips16e’ is similar, but enables the extended MIPS16e instruction set.

The ‘. set smartmips’ directive enables use of the SmartMIPS extensions to the MIPS32
ISA; the ‘. set nosmartmips’ directive reverses that.

Traditional MIPS assemblers do not support these directives.

8.78 Directives for extending MIPS16 instructions

By default, MIPS16 instructions are automatically extended to 32 bits when necessary.
The directive ‘.set noautoextend’ will turn this off. When ‘.set noautoextend’ is in
effect, any 32 bit instruction must be explicitly extended with the ‘.e’ modifier (e.g., ‘li.e
$4,1000’). The directive ‘.set autoextend’ may be used to once again automatically
extend instructions when necessary.

This directive is only meaningful when in MIPS16 mode. Traditional MIPS assemblers
do not support this directive.

8.79 Directive to mark data as an instruction

The .insn directive tells sde—as that the following data is actually instructions. This
makes a difference in MIPS16 mode: when loading the address of a label which precedes
instructions, sde-as automatically adds 1 to the value, so that jumping to the loaded
address will do the right thing.

8.80 Directives to save and restore options

The directives .set push and .set pop may be used to save and restore the current settings
for all the options which are controlled by .set. The .set push directive saves the current
settings on a stack. The .set pop directive pops the stack and restores the settings.

Chapter 8: MIPS Dependent Features 55

These directives can be useful inside an macro which must change an option such as the
ISA level or instruction reordering but does not want to change the state of the code which
invoked the macro.

Traditional MIPS assemblers do not support these directives.

56

Using sde-as (MIPS)

Chapter 9: Reporting Bugs 57

9 Reporting Bugs

Your bug reports play an essential role in making sde-as reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
But in any case the principal function of a bug report is to help the entire community by
making the next version of sde-as work better. Bug reports are your contribution to the
maintenance of sde-as.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

9.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

e If the assembler gets a fatal signal, for any input whatever, that is a sde-as bug.
Reliable assemblers never crash.

e If sde-as produces an error message for valid input, that is a bug.

e If sde-as does not produce an error message for invalid input, that is a bug. However,
you should note that your idea of “invalid input” might be our idea of “an extension”
or “support for traditional practice”.

e If you are an experienced user of assemblers, your suggestions for improvement of
sde-as are welcome in any case.

9.2 How to report bugs

A number of companies and individuals offer support for GNU products. If you obtained
sde-as from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
‘etc/SERVICE’ in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for sde-as to
‘bug-gnu-utils@gnu.org’.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of a
symbol you use in an example does not matter. Well, probably it does not, but one cannot
be sure. Perhaps the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the assembler into doing the right thing despite the
bug. Play it safe and give a specific, complete example. That is the easiest thing for you
to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not
been reported previously.

58 Using sde-as (MIPS)

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:

3

e The version of sde-as. sde-as announces it if you start it with the ‘--version’

argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of sde-as.

e Any patches you may have applied to the sde-as source.
e The type of machine you are using, and the operating system name and version number.
e What compiler (and its version) was used to compile sde-as—e.g. “gcc-2.77.

e The command arguments you gave the assembler to assemble your example and observe
the bug. To guarantee you will not omit something important, list them all. A copy
of the Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

e A complete input file that will reproduce the bug. If the bug is observed when the
assembler is invoked via a compiler, send the assembler source, not the high level
language source. Most compilers will produce the assembler source when run with the
‘-8’ option. If you are using sde-gcc, use the options ‘-v --save-temps’; this will save
the assembler source in a file with an extension of ‘.s’, and also show you exactly how
sde-as is being run.

e A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that sde-as gets a fatal signal, then we will certainly notice
it. But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of sde-as is out of synch,
or you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

e If you wish to suggest changes to the sde-as source, send us context diffs, as generated
by diff with the ‘-u’, ‘-¢’, or ‘-p’ option. Always send diffs from the old file to the
new file. If you even discuss something in the sde-as source, refer to it by context, not
by line number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.
Here are some things that are not necessary:
e A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

Chapter 9: Reporting Bugs 59

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

e A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.

Sometimes with a program as complicated as sde-as it is very hard to construct an
example that will make the program follow a certain path through the code. If you do
not send us the example, we will not be able to construct one, so we will not be able
to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

e A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

60

Using sde-as (MIPS)

Chapter 10: Acknowledgements 61

10 Acknowledgements

If you have contributed to sde-as and your name isn’t listed here, it is not meant as a
slight. We just don’t know about it. Send mail to the maintainer, and we’ll correct the
situation. Currently the maintainer is Ken Raeburn (email address raeburn@cygnus. com).

Dean Elsner wrote the original GNU assembler for the VAX.!

Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug infor-
mation and the 68k series machines, most of the preprocessing pass, and extensive changes
in ‘messages.c’, ‘input-file.c’, ‘write.c’.

K. Richard Pixley maintained GAS for a while, adding various enhancements and many
bug fixes, including merging support for several processors, breaking GAS up to handle
multiple object file format back ends (including heavy rewrite, testing, an integration of
the coff and b.out back ends), adding configuration including heavy testing and verifica-
tion of cross assemblers and file splits and renaming, converted GAS to strictly ANSI C
including full prototypes, added support for m680[34]0 and cpu32, did considerable work
on i960 including a COFF port (including considerable amounts of reverse engineering),
a SPARC opcode file rewrite, DECstation, rs6000, and hp300hpux host ports, updated
“know” assertions and made them work, much other reorganization, cleanup, and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most of the code in
format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric Youngdale has
done much work with it since.

The Intel 80386 machine description was written by Eliot Dresselhaus.
Minh Tran-Le at IntelliCorp contributed some AIX 386 support.

The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
University and Torbjorn Granlund of the Swedish Institute of Computer Science.

Keith Knowles at the Open Software Foundation wrote the original MIPS back end
(‘tc-mips.c’, ‘tc-mips.h’), and contributed Rose format support (which hasn’t been
merged in yet). Ralph Campbell worked with the MIPS code to support a.out format.

Support for the Zilog Z8k and Hitachi H8/300 and H8/500 processors (tc-z8k, tc-h8300,
tc-h8500), and IEEE 695 object file format (obj-ieee), was written by Steve Chamberlain
of Cygnus Support. Steve also modified the COFF back end to use BFD for some low-level
operations, for use with the H8/300 and AMD 29k targets.

John Gilmore built the AMD 29000 support, added .include support, and simplified
the configuration of which versions accept which directives. He updated the 68k machine
description so that Motorola’s opcodes always produced fixed-size instructions (e.g. jsr),
while synthetic instructions remained shrinkable (jbsr). John fixed many bugs, including
true tested cross-compilation support, and one bug in relaxation that took a week and
required the proverbial one-bit fix.

Tan Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the 68k,
completed support for some COFF targets (68k, 1386 SVR3, and SCO Unix), added support
for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and PowerPC assembler, and
made a few other minor patches.

1 Any more details?

62 Using sde-as (MIPS)

Steve Chamberlain made sde-as able to generate listings.
Hewlett-Packard contributed support for the HP9000/300.

Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM) along
with a fairly extensive HPPA testsuite (for both SOM and ELF object formats). This
work was supported by both the Center for Software Science at the University of Utah and
Cygnus Support.

Support for ELF format files has been worked on by Mark Eichin of Cygnus Support
(original, incomplete implementation for SPARC), Pete Hoogenboom and Jeff Law at the
University of Utah (HPPA mainly), Michael Meissner of the Open Software Foundation
(1386 mainly), and Ken Raeburn of Cygnus Support (sparc, and some initial 64-bit support).

Linas Vepstas added GAS support for the ESA /390 "IBM 370" architecture.

Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
support for openVMS/Alpha.

Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic* flavors.
Several engineers at Cygnus Support have also provided many small bug fixes and configu-
ration enhancements.

Many others have contributed large or small bugfixes and enhancements. If you have
contributed significant work and are not mentioned on this list, and want to be, let us know.
Some of the history has been lost; we are not intentionally leaving anyone out.

Index

A 16
BAPP e e e 15
HBNO _APP . .. e 15
Rt PP 5
—obreak. ... e e 52
——fatal-warnings........................... 13
=MD . 12
——no-break 52
STNO-ETAD L. e 52
SN0 WATLIL « o vt eet e e e e e e 13
-—statistics 13
-—traditional-format....................... 13
it 7 - < SN 52
Bl £ o« N 13
B WSS P 9
k= o 9
mAd e e 9
—ah . e 9
mAL e e e 9
- ¢ 9
k- J 9
—call_sharedo.uuiia . 52
D e e 9
SEB e e 49
SEL 49
e S PP 9
oL 27 49
“Ipath.......... 10
K 10
SRPIC . . e e e 52
a7 10
M 10
“mabi ... e 51
113 o1 49
-mdiv-checks 51
-membedded-data.................... ... 52
-membedded-pic.......... il 52
-mfp32. ... 51
SEDBA . e 51
TGPP3 . e 51
SmEP64 . .. 51
-mhard-float, 51
“mips16. 50
-mipsi6e. 50
-mips3D. ... 50
-mno-div-checkscciiiiiii.n. 51
-mno-fix-cw4010............ ..t 52
-mno-fix-r4000....... 53
-mno-fix-vr4300.......... 52
-mno-float 51

63
“MNO—GPCONSEottt 52
-msingle-float 51
-msmartmipsl 50
-msoft-float 51
-non_shared 52
O e 12
S0 49
SR 12
2 13
SVeISION. ...t e e 13
P 13
K 13
SXEOt L 52
(symbol) 26
INSH. .ot 54
0 e e 6
set autoextend............................ 54
set fp32 ... 54
set fpb4d 54
set gp32 54
set gp64 54
set mipsnml 53
set noautoextend..................l 54
SEE POP . it 54
set pushl 54
(Tabel)o 16
\
\" (doublequote character) 17
\\ (‘\’ character)ccooeiiiiiian.. 17
\b (backspace character) 17
\ddd (octal character code)................... 17
\f (formfeed character) 17
\n (newline character)........................ 17
\r (carriage return character)................. 17
\t (tab)o 17
\xd... (hex character code).................. 17
A
a.out..... ... 6
ABL, MIPS. 51
abort directive ...l 31
absolute section 22
addition, permitted arguments................ 30
addresses.ol 29

addresses, format of 21

64

advancing location counter 41
align directive..................l 31
architecture options, MIPS 50
arguments for addition 30
arguments for subtraction 30
arguments in exXpressions 29
arithmetic functions. 29
arithmetic operands. 29
ascii directive i 32
asciz directive i 32
assembler bugs, reporting. 57
assembler crash.............. 57
assembler internal logic error 23
assembler versionl 13
assembler, and linker......................... 21
assembly listings, enabling.................. ... 9
assigning values to symbols 25, 34
attributes, symbol oL 26

B

backslash (\\)l 17
backspace (\b)ccoviiiiiiiiii it 17
balign directive 32
balignl directive............................ 32
balignw directive 32
big-endian output, MIPS..................... 49
bignums 18
binary integers 18
bsssection.......... ool 22, 24
bug criteria oo oo 57
bugreports............iiiiiiiiie e 57
bugs in assembler................ 57
byte directivel 32

C

carriage return (\r)........... 17
character constants 17
character escape codesouuiinn.. 17
character, singleo 18
characters used in symbols 16
COMDAT 39
comm directive 32
command line conventions..................... 5
comments 15
comments, removed by preprocessor........... 15
common sections.o ... 39
common variable storage 24
conditional assembly 36
constant, single character..................... 18
constants.......... Ll 17
constants, bignum oL 18
constants, character.......................... 17
constants, converted by preprocessor 15
constants, floating point...................... 19
constants, integer 18

constants, number il 18

Using sde-as (MIPS)

constants, string 17
crash of assembler 57
current address oL 26
current address, advancing 41

D

data and text sections, joining 12
data directive ... 33
debuggers, and symbol order.................. 25
decimal integers 18
dependency tracking 12
deprecated directives.................. ... 48
directives and instructions.................... 16
directives, machine independent............... 31
dot (symbol) 26
double directive ool 33
doublequote (\") L. 17

E

ECOFF sections, MIPS 53
eight-byte integercooviin., 43
eject directivel 33
ELF sections, MIPS.......................... 53
else directiveo, 33
elseif directiveo 33
empty €XPresSiOnS . .vvvevreneennnennnnennn.. 29
end directive ... 33
endfunc directive 34
endianness, MIPS 49
endif directive 34
endm directive i 40
EOF, newline must precede................... 16
equdirective oo 34
equiv directive ...l 34
err directivel 34
€ITOT MESSSAZES -« - vt et e e iieeeiaeeeeaans 7
error on validinput........... 57
errors, continuing after.............. 13
escape codes, character....................... 17
exitm directive 41
expr (internal section)........................ 23
€Xpression argumentsiiaaan. 29
EXPIESSIONS « v vt ettt e 29
expressions, empty 29
expressions, integerl 29
extern directive i, 34

Index

F

fail directivel 34
faster processing (=f)l 9
fatal signalol 57
fatal warnings oL 13
file directive 35
file name, logical 35
files, includingl 37
files, input 6
£i11 directive ...l 35
filling memory 45
float directiveoiiiiiiiiiiin 35
floating point numbers................... ... 19
floating point numbers (double)............... 33
floating point numbers (single) 35, 45
flonums.........cooiiiiiiiii 19
format of error messages. 7
format of warning messages.................... 7
formfeed (\f)............ ... i, 17
func directive ...l 35
functions, in expressions. 29

G

global directive..................... 35
gp register, MIPS...................oooitt. 53
gp-relative data, MIPS 49
grouping datal 23

H

hex character code (\xd...).................. 17
hexadecimal integers......................... 18
hidden directive..................... ...l 47
hword directive 36

I

ident directive 36
if directiveo e 36
ifc directive 36
ifdef directive 36
ifeq directive ool 36
ifeqgs directive............... ...l 36
ifge directive oL 36
ifgt directiveol 36
ifle directive ... 36
iflt directive 36
ifnc directivecooviii i 36
ifndef directive 37
ifne directive i 37
ifnes directive 37
ifnotdef directive................ 37
include directive 37
include directive search path................. 10
infix operators. il 30
input ... 6
input file linenumbers oL 6

65
instructions and directives.................... 16
int directive Ll 37
integer eXpressions..............ovvuuuiinn... 29
integer, 16-byte............l 41
integer, 8-byte..........l 43
INteGErS ..ot 18
integers, 16-bito oLl 36
integers, 32-bit ... oLl 37
integers, binaryl 18
integers, decimal 18
integers, hexadecimal 18
integers,octall 18
integers,one byte...........l 32
internal assembler sections.................... 23
internal directive.............. ..o 47
invalid input il 57
invocation summaryoooonn... 1
irp directive il 37
irpc directiveo il 38
ISA, MIPS ..o 50
J
joining text and data sections................. 12
L
label (:) ..o 16
labels.......ocooiii 25
lcomm directive 38
1d . 6
length of symbols..................ooovinnt. 16
1flags directive (ignored).................... 38
line comment character....................... 16
line directive 38
line numbers, in input files 6
line numbers, in warnings/errors............... 7
line separator character 16
lines starting with #.......................... 16
linkero 6
linker, and assembler......................... 21
linkonce directive........................... 39
list directive 39
listing control, turning off 41
listing control, turningon 39
listing control: new page 33
listing control: papersize..................... 43
listing control: subtitle....................... 43
listing control: title line 47
listings, enabling................coooii i, 9
little-endian output, MIPS 49
Indirective 39
local common symbols 38
local labels, retaining in output............... 10
local symbolnames 25
location counteroiiiiiiiiee... 26
location counter, advancing................... 41

logical filename 35

66

logical line number........................... 38
logical line numbers.......................... 16
long directive L 39

M

machine independent directives 31
machine instructions (not covered) 4
machine-independent syntax 15
macro directive 40
INACTOS -« e eoe ottt e ettt e e et e 40
macros, count executed....................... 41
makerules 12
manual, structure and purpose................. 4
merging text and data sections................ 12
messages from assembler 7
minus, permitted arguments.................. 30
MIPS ABI ... e 51
MIPS architecture options.................... 50
MIPS big-endian output...................... 49
MIPS CPU type......oviiiiiiiie ... 49
MIPS debugging directives 53
MIPS ECOFF sectionscouueeunn... 53
MIPS ELF sectionsooevuneeinnnenn... 53
MIPS endiannessc.oeuinenneennennnn. 49
MIPS gp-relative data........................ 49
MIPS ISA ..o e 50
MIPS ISA override.ouiiiiie 53
MIPS little-endian output 49
MIPS option stack ..o, 54
MIPS PrOCESSOT . . .o vt e e et e e 49
MIPS small data.cooineeoaoaa... 49
MIPS-3D .. 50
MIPS16 . .ottt e 50
MIPSI16€ . .ottt 50
MRI compatibility mode 10
mri directive 39
MRI mode, temporarily 39

N

named SECtiONiiiii i 44
named SeCtionSouiiineinena. 22
names, symbol. ool 25
naming object file............ol 12
new page, in listings 33
newline (\n)........ 17
newline, required at fileend 16
nolist directive 41
null-terminated strings 32
number constants 18
number of macros executed 41
numbered subsections........................ 23
numbers, 16-bit.......... 36
numeric values. ... 29

Using sde-as (MIPS)

Q)

objectfile...............iiiiiiiin 6
object file format Ll 5
object filename 12
object file, after errors 13
obsolescent directives 48
octa directivel 41
octal character code (\ddd) 17
octal integers. 18
operands in expressions 29
operator precedence.euiiai.... 30
operators, in expressions 29
operators, permitted arguments............... 30
option summaryoiiiiii... 1
options, all versions of assembler............... 9
options, command line 5
org directive oo 41
output file......... ... 6

P

p2align directive............... 41
p2alignl directive........................... 42
p2alignw directive................... 42
padding the location counter.................. 31
padding the location counter given a power of two
.. 41
padding the location counter given number of
bytes ... 32
page, in listings 33
paper size, for listingsooiL.. 43
paths for .include................. 10
patterns, writing in memory 35
plus, permitted arguments.................... 30
popsection directive.................. 42
precedence of operators 30
precision, floating point 19
prefix operators. ... 30
Preprocessing............oouiiiiuinennn.... 15
preprocessing, turning on and off.............. 15
previous directiveiiiiiiia.., 42
print directivel 42
protected directive................ 47
pseudo-ops, machine independent 31
psize directiveo 43
purgem directive 43
purpose of GNU assembler 5
pushsection directive........................ 42

Q

quad directivel 43

Index

R

relocationl 21
relocation example........... 22
reporting bugs in assembler................... 57
rept directivel 43

S

sbttl directive 43
search path for .include..................... 10
section directive 44
section-relative addressing 21
SECHIONS . . ot et 21
sections in messages, internal 23
sections, named 22
set directive 44
short directive 45
single character constant 18
single directive................ ..o 45
sixteen bit integers............. 36
sixteen byte integer 41
size directive il 45
skip directive ...l 45
sleb128 directive ..., 45
small data, MIPS 49
small data, MIPS ECOFF.................... 53
SmartMIPS 50
SOUTICE PIOGTAINL . o vt v vve v e snnennsananneanns 6
space directive ...l 45
space used, maximum for assembly............ 13
stabd directive 46
stabn directive 46
stabs directive 46
stabx directives, 45
standard assembler sections................... 21
standard input, as input file 5
statement separator character................. 16
statements, structure of 16
statistics, about assembly 13
stopping the assembly................. 31
string constants.................. 17
string directive..........l 46
string literals, 32
string, copying to object file.................. 46
struct directive i 46
subexpressions. i 29
subtitles for listings.......................... 43
subtraction, permitted arguments............. 30
summary of options 1
supporting files, including 37
SUPPIessing warnings. 13
symbol attributes............ oL 26
symbol namesl 25

symbol names, local.coooinan 25

67
symbol names, temporary 25
symbol type....... 27
symbol value il 26
symbol value, setting......................... 44
symbol values, assigning...................... 25
symbol versioning...............l 47
symbol visibility oo L 47
symbol, common...... o oL 32
symbol, making visible to linker............... 35
symbolic debuggers, information for........... 45
symbols.............o i 25
symbols, assigning valuesto 34
symbols, local common....................... 38
symver directive ool 47
syntax, machine-independent 15
T
tab (\t) .o 17
temporary symbol names..................... 25
text and data sections, joining 12
text directive L. 47
time, total for assembly 13
title directivelllL. 47
trusted compiler 9
turning preprocessing on and off 15
typeof asymbol.................ooiiiil, 27
U
uleb128 directivecooviiiiiiiia 47
undefined sectionl 22
\V
value of a symbol 26
version of assembler.......................... 13
versions of symbols 47
\%\%
WaIning MeSSAZES . . o oo v v vt e e ettt eeeean.n 7
warnings, fatal.............o oL 13
warnings, suppressing 13
warnings, switchingon 13
whitespace 15
whitespace, removed by preprocessor 15
word directive L. 48
writing patterns in memory................... 35
Z
zero-terminated strings................... ... 32

68

Using sde-as (MIPS)

Table of Contents

1 OVverview.......ooiiiiiiinnieernnnenennnnn 1
1.1 Structure of this Manual................................. 4
1.2 The GNU Assembler ..., 5
1.3 Object File Formats........... 5
14 Command Line i 5
1.5 Imput Files. 5
1.6 Output (Object) File............. 6
1.7 Error and Warning Messages............couuuieieeeiooa.. 6

2 Command-LineOptions.................... 9

2.1 Enable Listings: —alcdhlns]c.oiiiiia. ... 9
2.2 TD 9
2.3 Work Faster: =f...... 9
2.4 .include search path: -I path........................... 9
2.5 Difference Tables: =K 10
2.6 Include Local Labels: =L.......... 10
2.7 Assemble in MRI Compatibility Mode: -M................ 10
2.8 Dependency tracking: ==MD 12
2.9 Name the Object File: =o..........o ... 12
2.10 Join Data and Text Sections: =R 12
2.11 Display Assembly Statistics: ——statistics............. 12
2.12 Compatible output: --traditional-format............ 13
2.13 Announce Version: =veiiiiiiiiinaiaaan.. 13
2.14 Control Warnings: -W, --warn, —-no-warn.............. 13
2.15 Make Warnings Fatal: -X, --fatal-warnings........... 13
2.16 Generate Object File in Spite of Errors: -Z.............. 13
3 Synmtaxiiiiiiiiiiiiiiiiiiiiiieaaa 15
3.1 PreproCessing...........c..uiiiiiiiii e 15
3.2 WHhitespacecouit 15
3.3 Comments........oooiiiiiii e 15
34 Symbols..... ... 16
3.5 Statements 16
3.6 Constantsoiii i 16
3.6.1 Character Constants........................... 17

3.6.1.1 Strings..........ooiiiiiiiiiii... 17

3.6.1.2 Charactersccooiiiiiinaa... 18

3.6.2 Number Constants. 18

3.6.2.1 Integers............cccoviiiiieionin. 18

3.6.22 Bignums i, 18

3.6.23 Flonums.........ouniiniiiiiainn... 18

Using sde-as (MIPS)

Sections and Relocation................... 21
4.1 Background............... . 21
4.2 Linker SeCtiOnS.ottt et 22
4.3 Assembler Internal Sections............, 23
4.4 Sub-SeCtiOnSttt 23
4.5 bSS SECtION .. oottt 24

Symbols............oiiiiiiiiiiiiiii., 25
5.1 Labels.......ooii 25
5.2 Giving Symbols Other Values 25
53 Symbol Names......... ... 25
5.4 The Special Dot Symbol 26
5.5 Symbol Attributes................ 26

5.5.1 Value........ooo 26
55,2 IYPe it 26

6.1 Empty EXpressions...........c.ooiiiniininiininnann.. 29
6.2 Integer EXpressions.oueiiiiiniinennennann. 29
6.2.1 Arguments..............iiiii 29

6.2.2 Operators...........covuiieiineineianiaeia 29

6.2.3 Prefix Operator 29

6.2.4 Infix Operators..............ccoiviiinnnano... 30
Assembler Directives.............ccovv.... 31
4% - oY % o U 31
7.2 .align abs-expr, abs-expr, abs-expr 31
7.3 .asciistring"... ... 31
74 Lasciz "string"... ... 32
7.5 .balign[wl] abs-expr, abs-expr, abs-expr 32
7.6 .Dyte eXPreSSIONScieeeeeeieeneaiaiiininnns 32
7.7 .comm symbol , length [, align]...................... 32
7.8 .data subsectioniiiiii 33
7.9 .double FIONUMScov et ee ettt ee et eaeeann 33
710 ceJeCt . 33
0 - I 1~ Y 33
712 Lelsedif ... 33
T13 cend .. 33
714 endfunc.............iiiiii e 33
715 cendif ..o 34
7.16 .equ symbol, @XPreSSiONueuueieuunnunnnnnnn.. 34
7.17 .equiv symbol, eXpressSion 34
[0 < T - ol 34
719 LeXibm. .o 34
T.20 L @XtOTIL. oottt 34
721 .fail exXpresSsSionuuiiiiiiiiiiiina... 34

722 file stringc.iiiiiiiiiii 34

7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70

.fill repeat , size , valuec.cuiinn. 35
float flonums ...t 35
.func name [,1abel]............cc.uiiiiiiininianann, 35
.global symbol, .globl symbol 35
.hword expressions................ol 35
ddent .. 36
.if absolute expression................ ..., 36
.include "file" 37
.int expressions 37
.irp symbol,values.t 37
.irpc symbol,values.............ccuiiiiininiiiiiaan. 37
.lcomm symbol , length [, align] 38
Aflags ..o 38
.line Iline-number i, 38
.linkonce [typell 38
.1n line-number il 39
mri val ... 39
T 39
long exXpresSionsoouiiiiiii i 39
11T o o« R 39
nOList. ... 41
LOCta bignums ...t 41
orgnew-1c , fill oiiiiiiiiiiii 41
.p2align[wl] abs-expr, abs-expr, abs-expr 41
.popsection 42
CPTEVIOUS . .ottt e 42
.pushsectionmname, 42
.print string il 42
.psize lines , COlUMNSoiiiiiiiniennnann... 42
PUFGEM NAME . ..ottt it ee et iiie e e iieae e e 43
.quad bignumsiiiiiii 43
LTEPL COUNT .. oottt 43
.sbttl "subheading"l 43
.sectionmname iiiiii i 43
.set symbol, eXpresSSionoovuiuiniiinna..n. 44
.short expressions..............ccooiiiiiiiinin.... 44
.single flomumscoiiiiiininniniiiin... 45
S1Ze . . 45
.51ebl28 expressSionscoiiiiiiiiiii i 45
.skipsize , fill i 45
.space size , fill it 45
.stabd, .stabn, .stabs................ i, 45
.string "sStr' L. 46
.Struct exXpression..............ooiiiiiiiiiiiiia... 46
CSYMVET ..ottt e e e e 46
.text subsectioni il 47
.title "heading" i 47

.ulebl128 expressions.................iiiiii 47

1ii

iv Using sde-as (MIPS)

7.71 .internal, .hidden, .protected...................... 47
7.72 .word eXpresSSiOoNSciiiiiiiiiiii i 48
7.73 Deprecated Directives 48
8 MIPS Dependent Features 49
8.74 Assembler options........... ... 49
8.75 MIPSobjectcode.........cooviiiiinii i 53
8.76 Directives for debugging information.................... 53
8.77 Directives to override the ISA level 53
8.78 Directives for extending MIPS16 instructions............ 54
8.79 Directive to mark data as an instruction 54
8.80 Directives to save and restore options................... 54
9 Reporting Bugs........................... 57
9.1 Haveyoufoundabug?.................., 57
9.2 Howtoreportbugs...............c.ciiiiiiiiii.. 57
10 Acknowledgements 61

